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Anomalous scaling and Lee-Yang zeros in self-organized criticality
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We show that the generating functions of probability distributions in self-organized criti€8@% models
exhibit a Lee-Yang phenomendPhys. Rev.87, 404 (1952]. Namely, their zeros pinch the real axis zat
=1, as the system size goes to infinity. This establishes a new link between the classical theory of critical
phenomena and SOC. A scaling theory of the Lee-Yang zeros is proposed in this setting.
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INTRODUCTION (“universality classes). Consequently, a large effort has
been devoted to the computation of these quantities.

In 1988, Bak, Tang, and WiesenfelBTW) [1] proposed Considerably less efforts have been made to establish a
a mechanism in which a dynamical system reaches “spontsslear foundation of the basic SOC concepts and to clarify
neously” a stationary state with some features reminiscent ofheir connection to their classical statistical mechanics coun-
a critical state. More precisely, by its only internal reorgani-terpart[4,5]. Clearly, this is a hard task since even prelimi-
zation in reaction to(stationary external perturbations, a Nary notions like “state” or "thermodynamic limit,” though
system organizes into a state with scale invariance and powduitively clear, suffer from a lack of precise mathematical
law statistics. This effect, called self-organized criticality d€finition in this setting. In discrete automata like the BTW
(SO0, was quite unexpected, since usually the critical staté"0del[6] the state is the unique ergodic probability measure,
of a thermodynamic system needs a fine tuning of some corfL+ Of @ discrete Markov chain, finite whenis finite. In
trol parametertemperature, magnetic field, etc .) which  continuous dynamical systems like the Zhang modé

is at first sight absent from the model introduced by BTWthere exists typically |nf|n|tely_ many ergodlq measures and
: therefore one has to add additional constraints to define the
and from the many variants proposed laf@r3]. Further-

more, the stationary regime corresponds to a nonequilibriu stateu in a nonambiguous way8—10]. The probability

MistributionsP, , for the observablea,s,t aredirectly
situation where théstationary flux of external perturbation : L L ;
e . . . ined from 1 h ntain | information.
is dissipated in the bulk or at the boundaries, generating gbtained fromy, [8,10] but they contain less informatio

constant flux throuah the svstem. As a Consequence. one q’he observabla,s,t are simply indicators of the dynamics.
. 9 y L que ’ 9here is noa priori reason to believe that the knowledge of
erally believes that the usual equilibrium statistical mechan-

. . . P .(s),P.(a),P (t) or even of the joint probability
ics treatments using the concepts of Gibbs measure, free ept . . : :
ergy, etc. . .. cannot be applied for the analysis of SOC BL(a,s,t) gives all the relevantthat is, allowing us to clas

sify the models into universality clasgseasformation about
systems. the stat
On the other hand, it is also believed that concepts like The '[?I\tel_rhod namic limit — and the suoposed “con-
universality classes, critical exponents, order paramete()er ence” of 3,:0 2 “critical State” poses degper roblems
etc. ... ,borrowed from the equilibrium statistical mechan- . 9 KL P €per p

since even the proof that there exigtsleeda limiting state

ics of phase transitions, are still relevant in SOC. Actually, L
the identification of universality classes is one of the mainand that the probability distribution of avalanche observables

goals in the SOC literature. However, since these concepf%rg dsetlil qrer:g]ii:lgl tz::\s“srirc]:gl rigﬁg; ;IO rggcﬂgﬂieésf?:rorrg?ﬁc-
are not defined via a thermodynamic analysis, alternativ :

A : ions of the thermodynamic limit like the Dobrushin-
T e e S o, e andor:RuellSDLR) (1] cannotbe ey applied be-
observables characterizing the avalanches, sigedlration cause of thea priori absence Of. a.G|bbs formalls.m. On the

, . other hand, the methods used in interacting particle systems,
(t), area @), etc. ... , araefined. Fix such an observable, . : L .

def allowing us to define the dynamics in the thermodynamic

say N, and compute the related probabili® (n)=Prob(N limit, on the basis of the Hille-Yoshida theorem and the prop-
=n) at stationarity for a system of characteristic sizéfhe  erties of Feller processes, requires locality conditions which
numerical simulations show that the graphRyf(n) exhibits  are broken in the SOC model. One has then to develop new
a power law behavior over a finite range, with a cutoff cor-ideas for non-Fellerian Markov processes and this has only
responding to finite size effects. Asincreases the power been done in a few examplgs2].
law range increases. This leads to the conjecture that as  But one of the main problem ithe treatment of the data
—o, P (n) converges to a probability distributiod* (n), obtained from finite size systems simulations itseld the
with a power law tail having an exponeny called thecriti- extrapolation to the.—< limit. Indeed, though it was be-
cal exponenbf the observabla. It seems commonly admit- lieved in the earlier SOC papers that this extrapolation can
ted in the SOC community that a classification of the modelde handled by classical finite-size scal[ig], further inves-
can be made by the knowledge of their critical exponentgigations proposed alternative scalifyy4—16 and, at the
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moment, there is no agreement on which scaling form apwhen r>1 a bias is artificially induced by the numerical
plies. Consequently, a lot of efforts have yet to be devoted tsimulations, when the size of the sample used to generate the
the understanding and analysis of SOC models. empirical probability distribution is fixed independently of
Though the analogy between self-organized criticality andhe lattice size. This effect can be analyzed with the Lee-
usual critical phenomena is the core of the SOC paradigm, iYang zeros(Sec. Il B 3. We then briefly study some other
is remarkable that, up to now, some well developed techscaling form proposed in the literature and the effect of a
niques of analysis of critical phenomena have not beefinite size scaling violation on the Lee-Yang zer(Sec.
adapted to the study of SOC models. A phase transition had$B 4). Finally, in Sec. Ill, we present numerical simulations
different manifestation. It is in particular characterized by afor the Lee-Yang zeros in the Zhang SOC model and com-
Singu|arity of the thermodynamic potenti&free energy, pare them to the theoretical results obtained in Sec. Il. We
pressurg At a phase transition point, and for suitable inter- S€€ no clearcut evidence of finite size scaling violation, but
actions, the free energy, which is the generating function ofhow that this model is quite sensitive to the numerical cutoff
the cumulants, exists in the thermodynamic limit but it is notinduced by a lattice size independent sampling. This can
analytic (in a kth order phase transition it €1 but not  raise some doubts on the conclusions about scdfinge
€. In many examples, the failure of analyticity is mani- size scaling, multifractal, or whatsoeyevhich can be drawn
fested by the Lee-Yang phenomer{d]. For finite size sys- f_rom some large lattice simulations done on this model in the
tems the partition function is a polynomial in a varialle literature.
which typically depends on control parameters like the tem-
perature or the external field. Since all coefficients are posi- | PROBABILITY DISTRIBUTION AND LEE-YANG
tive there is no zero on the positive real axis. However, in the ZEROS
thermodynamic limit, at the critical point, some zeros pinch A. The finite size system
the real axis az=1, leading to a singularity in the free e
energy. The finite-size scalin% propertiegs of thye leading zeros L€t PL(n)=Prob(N=n) be the probability distribution of
and of the density of zeros nearze-1 determine the order e avalanche observablée 1, ... & , where the index
of the transition[18] and also the critical exponents in the '€fers to the characteristic size of the systém, the maxi-
case of a second order phase transifib. mal value thal\ takes isfinite, whenevelL <o, but diverges

A natural question is whether there exists a similar prop-8SL— . Therefore, the function

erty in SOC, namely can we exhibit a “free-energy-like” &
f_ur;cnon,_devglopl.ng_ singularities in a s!m|lar way in the in- Z.(2)= z 2P (n), (1)
finite lattice size limit. Though there exists a huge literature n=1

about the Lee-Yang zeros, there is, to the best of our knowl- . ) ]
edge, no attempt to study self-organized criticality from thisWhere ze G, is a polynomial of degred, . In particular,

point of view. In this paper, we show that the cumulantsSINc€ZL(2) is an analytic function ot in the complex plane,
generating function of the probability distribution of the ob- &l its moments exist. Denote Hy[ ], the expectation with

servables,s t, ... have this property. More precisely, the '€SPect toP, (n). Then we define

expected convergence & to a power law induces a Lee- & def

Yang phenomenon for the corresponding cumulants generat- m (q)= >, P (mn9=E[n9], , 2
ing function[Eq. (1)]. We show that this effect is related to n=1

the observed divergence of the moments. Furthermore, a . . .
scaling theory of the Lee-Yang zeros is proposed. where g is a real (positive number. For integem, the

After some preliminarie§Sec. ), we give explicit analyti- ML(0)’s are the moments d?, (n). Note that the normaliza-

cal results(Sec. 1) in several cases used as guidelines fortion ©f PL(n) imposesZ, (1)=m, (0)=1. ,
For finite L, Z, (z) hasé, zeros inC that are either real

subsequent analyses of a SOC moggéec. Ill). We first _
study the truncated power law case where the cutoff tends @0' or complex conjugate. Denote them (k) k

infinity when a parametelr (corresponding the lattice size in — L - - - L @nd order them such that<{z (1) 1[<---
SOC models tends to infinity(Sec. Il A). We give in par- <l|z.(k) ~1[<--- <[z (&)~ 1|. Note thatz=0 is a trivial
ticular an analytic expression for the zeros. Then, we invesZ€/0. Of‘omLkJ|tIp|ICIty one, sk|nce_PL(1)>O. Write z, (k)
tigate the effect of a smooth cutofec. Il B. We first dis- = Ru(K)€' t0=1+r (k)e'". Since allP.(n) are posi-
cuss the properties that this cutoff must have, extrapolatelve ZL(2) has no zero on the positive real axis for finite
from numerical simulations, and present some of the ansafzonsequently, the  logarithmic-generating  function
found in the literaturéSec. 1l B 9. We then explicitly com-  109[Z,(2)] is well defined onit} . Furthermore,

pute the Lee-Yang zeros for a probabili[ty (]:iistribution obey- def

ing the finite-size scaling form proposed[it8] and converg- _ t

ing to a power law ad —«~ (Sec. Il B2. We show, in Gut)=loglZ,(€)] @
particular, that when the power law exponeris larger than is an analytic function of. Define

1 there is aviolation of the scaling usually observed in clas-

sical critical phenomena; namely, there is an anomalous—

logarithmic dependence dnfor the angle that the zeros do  IThere is obviously a formal analogy between E. [Eq. (3)]
with the real axis in theé=Ilog(2) plane. We also show that and a partition functiorfa free energy
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L =K/n’, for a certainn range, n=ng, ...,©, where ng
xL(@)= @IOQ[ZL(Z)]|Z=17 (4) <o, VL. The numbem, depends on the model and on the
observable and introduces an extra parameter in the charac-
teristics of the probability distribution. In the computations
done in this paper there is no loss of generality is assuming
thatny= 1. Therefore, in the sequé?* (n) will stand for the

where z=¢€'. The quantitiesy, (q) are easily expressed in
terms of the Lee-Yang zeros,

&L 1 power lawK/n7,n=1, ... p.
x(=(-1)9g-1)1> ————. (5) The measured exponentin SOC belongs to the interval
k=1 (1—2z. (k) 11,2. K=P*(1) is the normalization constant. Conse-
quently,K =1/£(7) where{ is the Riemanri function? Un-
B. The “thermodynamic” limit L — o der the above assumptions, the moment$q) behaves as-

ymptotically like =% n9"7. This sum diverges for aly

>7—1. It is numerically observed tham, (q) diverges like
As already written in the Introduction, a mathematicalm, (q)~L®. A central issue is to compute tisealing ex-

definition of the thermodynamic limit in SOC is a difficult ponentsgiven by

task, beyond the scope of this paper. However2@] we

developed a dynamical system approach for the Zhang df Jogim.(q)]  loglx.(a)]

model. Then, the thermodynamic formali§2l—24 can be a(q)= lim oglL) lim og(L) " (6)

used to define the finite size SOC state of a Gibbs measure Lo Lo

in this setting. It is then shown that the joint avalanche size . . . .
distribution ?or example, can be obtainéd in this formalisma(q) is an nondecreasing function. Its Legendre transform is

. . . . ._found under the name of “multifractal spectrum” in the SOC
via a proper potential. The corresponding generating function . . . )

. ) . literature [14] though it has no direct connection with the
for the time correlations, called the topological pressure, i

) . € Bractal geometry of the invariant set.
the formal analog to the free energy. In this setting, it is SinceP* () is a probability distribution the limiting gen-

argued that the critical behavior expected in the thermody- . :
S . g -’ erating function
namic limit is manifested by a nonanalyticity of the topologi-

1. Divergence of the moments and Lee-Yang phenomenon

cal pressure ak— o, which can be linked to the loss of o

hyperbolicity characterizing the limiL —c of the Zhang Z*(2)=lim Z,(2)= >, P*(n)z" 7)
model[25]. The loss of analyticity can be easily detected by Lo n=1

looking at the generating functiofl). Indeed, its zeros ex-

hibit a Lee-Yang phenomenon. is still an analytic function in the open unit disc ith How-

The paper{20] is devoted to dynamical system aspectsever, the logarithmic-generating function & (n) is not
and to the mathematical foundation of a thermodynamic foranalytic near tz=1 since the derivative of order>7—1
malism for the Zhang SOC model, and the link between the>0 diverge. The corresponding singularity is related to the
scaling theory of Lee-Yang zeros in classical critical phe-behavior of the zeros in the vicinity @~ 1. More precisely,
nomena and the general SOC model is not addressed. Thisfig >0 arbitrary small, calll (€)={i||z.(i)—1|<e} and
the aim of the present paper. The results developed here ang(e) =#l,(€), where # denotes the cardinality of a set.
therefore complementary {@0] but are independent. Then the divergence of (q) is governed by the zeros

The present paper focuses on the analytic properties of thehich accumulate in| (€). Namely, the sun{5) contains a
logarithmic-generating functions of the probability of ava- singular term
lanches indicators, wheh—~. It intends to analyze the
variations in the Lee-Yang zeros properties if one uses the . cogqu (k)]
different scaling forms found in the SOC literature. Conse- vs(L,e,)=(-1)%2(q—1)! k21 T ®
guently, we collected the minimal implicit assumptions used - L(
in the SOC literature and we infer the consequences the%
lead to. This means that the result developepriori holds
for all SOC models.

It is first assumed tha®, (n) converges to some probabil-

ity distribution P*(n),n=1,... . It is furthermore as- ) B . .
sumed thatP* (n) has a power law tafl, namely P* (n) In the theory of classical critical phenomena, it is possible
to relate the scaling exponents of quantities such as magne-

tization or latent heat, susceptibility, etc . to thebehavior

2The particular structure of the Zhang model allows us to sym-Of the Lee-Yang zerqs near w=1. There exists a scaling
bolically encode the dynamics. In the framework of the thermody-tN€ory based on earlier works by Lee and Yahg], Gross-
namic formalism a Gibbs measure is a probability measure weight™ann and Rosenhauf26], Abe [27], Suzuki[28], Privman
ing the symbolic chains encoding the trajectories with anand Fishef29], ltzyksonet al.[30], and Glasseet al. [31].
exponential weight called a potenti@ee[20] for details.

3Note that the limiting probability distribution is defined only if
1. 4In general the normalization constant dependsign

nL(€)/2

hich diverges ak — <, while the remaining part in the sum
is regular and is bounded by £ 1)!/€9 asL— .

2. Scaling of the zeros in classical critical phenomena
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Many analytical and rigorous results are also kno@for  the Lee-Yang zeros and the Fisher zeros and we will use the

example[32—-35). A lot of efforts have been devoted to the generic terminology “Lee-Yang” for the zeros.

study of ferromagnetic systengs.g., Ising or Potts models

though many qther e_xamples ha\{e algo been studied. in th, SCALING THEORY OF SOC AND LEE-YANG ZEROS

literature. In this setting, one distinguishes the zeros in the

complex magnetic fieldcalled Lee-Yang zergsfrom the In this section we establish analytical results for various

zeros in the temperature plariBisher zeros In the first finite size scaling forms found in the SOC literature. These

case, the zeros lie on the unit circle for a large class ofesults are then used in Sec. Ill for the analysis of the em-

models including the Ising’s one. pirical data obtained from a numerical simulation of a SOC
The Fisher zeros usually approadh=0 in the t  model. As a matter of fact, for finite size SOC systems, the

=log(2)-complex plane with a constant angfe (this is the  power law is truncated by a cutoff characterized by a length

case for the Ising model and mean-field ferromagnetic modscale A , usually different from&_ . The starting point is

els[31]). This allows us to obtain simple scaling expressiontherefore the analysis of a truncated power law with a sharp

for the singular part of the free enerd§(t), wheret is the  cutoff at a value\ | . This is a useful example for subsequent

reduced temperature. In this setting an analytic expressioanalysis since the analytic form &f_(n) and the cutoff is

for f5(t) has been obtained by Grossmann and Rosenhau&nown.

[26], and, later on, extended by Itzyksenal.[30] by using

the renormalization group theory. This approach has been A. Zeros of a truncated power law

extended by Glasset al. [31] to mean-field models. In the

thermodynamic limitf S ~A_|t|>~*, whereA_. are universal

constants ¢ label the two magnetic phases at low tempera

ture) and « is the critical exponent for the specific heat. It

follows from the renormalization group analy$&9] that the

singular part of the free energy obeys a finite-size scaling

form: For Osqgsr—1, m(q)—¢(7—q)/{(7) and conse-

quently o(q)=0. The nonzero scaling exponent$q) can

Assume thaP (n)=C_ /n",n=1,... ¢ , whereC isa
‘normalization constant and, =A, =L 7>1,8>0. Fur-
thermore, assume that2.

1. Scaling of the moments and logarithmic-generating function

1 be obtained from the following integral approximation of
s - 12— a)
F(LV) v]:[t(AV) 1 ©) m, (q), which becomes exact in the limit—, provided
qZT_ly
where V is the finite volume andF a universal function.
Accordingly, then first Fisher zeros are given by a1 Jl q C. g1
m ~C AT ui"'du= ——— (A" 7-1).
o U(2—a) L(@)~CLA{ A, q+1—7( N )
ty(n) = -z ol (7= 9). (11
[A2 +A%2—A,A_cogma)]V
(100  Then, o(q)=p(q+1—7) for (rea) g>7—1. Note, how-
, ever, that for finite size, one has additionaldependent
The angle¢ is related toA.. ,a by terms which have to be considered when extrapolating from
A numerical simulations. It is also interesting to note that for-
Cos(ﬂ.a)__} mula (11) gives useful information on theate of conver-
Al genceof m_(q) to a constant fog<<7—1. Indeed, the con-

taf(2—-a)¢]=

sin(wa) ' vergence isnot uniformin g, namely thecloseris g to
—1 thesloweris the convergence rate. This means that a

This situation, where the zeros approach the singularity witlsystematic bias due to finite sizeintroduced in the numeri-
a constant angle¢ and where the modulus scales like the ca| simulations when dealing with thgs close tor— 1. This
volume to a certain power will be referred toraermal scal-  produces a spurious curvature, neartol, for the function
ing in the sequel. o(q) extrapolated from numerical data. This effect, which
curve or a union of curves dividing the complex plane insjnce it can be interpreted as an evidence of a multifractal
different regions of analyticity oZ*(z), corresponding to  scaling.
different phases. More precisely, it has been recently proved The scaling exponents can also be obtained from the scal-

by Biskup et al. [34] that the zeros lie on curves with a ing of the logarithmic-generating function. Indeed, the gen-
simple analytic expression and accumulate in the thermodygrating function writes

namic limit on loci where the various branches of the free

energy have the same modulus. This last result suggests that &

a wide extension of the Lee-Yang phenomena can be made Z(H)=1+ 2 P (n)(e"—1)~1

toward dynamical systems near to a critical point. We now n=1

develop this aspect for the analysis of the logarithmic- 1

generating function of probability distribution in the SOC +CLAﬁ*TJ' u-"(ettU—1)du. (12)
framework. In the sequel, we will not distinguish between VAL
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Sett'=At and Lee-Yang zeros. Though the for(h4) can be used to com-
pute the Lee-Yang zeros, it is easier to use
def rq ) “otrn 1
p(t)=] u (e'"=1)du= D, —f u" du AL
0 a=1 ! Jo

1
Z, ()=, PL(n)et“fchAﬁ*Tf h(u,t’)du, (18
n=1 AL

o t’'n
=2

aoanl(n+1-7)°

13

whereh(u,t’)zu”et'“. There exists several techniques to
compute the Lee-Yang zeros in statistical mechanics. A stan-
Note that sincer<2, this integral is finite as can easily be dard way is to argue that the asymptotic free energy admits
checked by integration by part. Therefore the commutationifferent analytic continuation in different regions of the
of the integral and the series is allowed. complex plane, separated by Stokes lines where the zeros
Consequently, accumulate in the thermodynamic limit. Indeed, because of
Lot rern B(1-7) P the large number of terms in the polynomial which make up
ZLO~1+CAL TP(t)=1+CLL PaL?) (14 the partition function, the behavior tends to become domi-
nated by some set of the coefficients. Thus we have different
analytic functions in different regions of the complex plane.
G (t)=log[ 1+ C LAL=Dy(tLA)]. (15  These functions have oscillating phases but smoothly vary-
ing amplitude. The zeros locate then on Stokes boundaries
(1) is a smooth function oft which vanishes as—0. where two types of behavior have comparable magnitude

and

Therefore, fort—0 [30,31,34. The Stokes boundaries become cuts in the ther-
Bl 5 modynamic limit. Across the boundaries the free energy has
GL()~CLLP " V(tLP), (16)  aregular real part and jumps in the imaginary ja].

Applying this strategy to our formal partition function
(18), one identifies easily two regions. For réglasu grows
from to 0 tow, h(u,t’) first decay likeu™ 7 until a minimum
u_=7/t’'. Therefore,u_>1/A, when t<7. For u>u_,

2. Lee-Yang zeros h(u,t’) grows exponentially like'V. Therefore, when’ is
small the integral in Eq.(18) is essentially dominated
by the algebraic decayu™’ and fi,ALh(u,t’)du~

P(t')=—C AT t=—C LP D, (17  [U(=—1)][A[ '=1]. On the other hand, for large’,
. L . _ _ _ u_—0 and the algebraic part is negligible compared to the
Sincer>1, A[. dlverg_es.z,b(t’) is an increasing function exponential part. Hence f%/A h(u,t’)du~f}, et'udu
of the real variablé’ which vanishes as'=0 and tends to Nt , - -
—w whent'— —o. Furthermore, for anyK>0, (') is =(1t")[e' —e™]. This argumentation extends to comptéx

bounded byy(K) in the ball|t'|<K in the complex plane. gnd suggests that one can roughly d_ividetthemple>_< plane
Consequently, Eq17) can be fulfilled only ift; (k)'s havea into two regions where, (t) has a different analytic form:
diverging modulus as Igrows. On the other hand, since for sufficiently smallt’ the algebraic part dominates, while

t.(k)=t/(K)/A, converges to zero|t/(k)| must grow Lor Iartgett thet(ta;(por;entlalhpart L?] d?mlr;ant. Then tfhti zeros
slower thanA, . It grows in fact like log\;) as shown be- ave fo stay at the place where the two forms are of tné same

low order. Therefore an approximate equation for the location of

Note that, conversely, when<1, —C, LA™Y goes to the zeros is given by
zero in the thermodynamic limit.Then, the zeros are for-

mally given by til[e"+a1t’—a2]= - a-il ’

which gives the right scaling for the moments by differenti-
ating with respect td att=0. One remarks that this scaling
form is analogous to the forr(®).

From Eq.(14) the zeros are approximately given by

-1

(19)
t (k)———1// l(—C A7 l)"“_l/f 1(0) a,=1/(1-7),a,=e

o ) ) The solutions o' /t’=— A7~/ (7—1) are given by
wherey, - is thekth branch of the inverse af in the com-

plex plane. Consequently, the zeros have a simple scaling in —1
these case similar to Eq10). In particular,the argument ti (k) =At (K)=—W| —], (20
does not depend on.L AL

The observed values of the critical exponents in S@C,

>1, induces anomalous scaling that can be observed on tghereWi(x) is thekth branch of the Lambert functidi3e].
Note that the Lambert function has infinitely many branches

and consequently the equati@ﬁ'/t’z—A[’ll(r— 1) has
5Though the limit probability is not defined it is nevertheless pos-infinitely many solutions. Indeed, in replacing the initial sum

sible to investigate the finite size scaling properties for the zeros oby an integral in Eq(18) we have introduced spurious zeros
the finite size generating function. which have to be removed for finite. In the sum(18) one
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has a step of integration A{ which defines a lower cutoff in
the scales one has to consider. Consequently, only the
branchesk=—A/2...A/2, where one takes into account
the symmetry of the zeros with respect to the real axis, are
relevant.

The Lambert functioW, admits the following expansion,
for large |log(x)| [36]:

Wi (X) =log,(x) —log[logy(x)]

+ 2 Clmm’ (21)

PHYSICAL REVIEW 65 036131

=0 m=1 (log, x)'™m

where log is thekth branch of the complex logarithm and
Cim=(1/m!) (—1)'[:1’1“] is expressed in terms of the
Stirling numbers of the first kind-¢ 1)™""[[] [36].

The double serieE |- o= m=1Cimi[ loglog(X) 1™ (logx)' ™
is absolutely convergent for sufficiently largeg(x)| [36].

Since we are only interested in the asymptotic divergence

when L grows, one can therefore neglect the series in the®
. E

asymptotic. Note, however, that the convergence to the

asymptotic regime where the series becomes negligile
faster when the produg8(—1) is larger.

The term lodlogJA™ Y/(7—1)]} cannot be neglected com-
pared to IogiA[’ll(a-—l)] since it contains crucidt depen-
dence for the real part df (k) (see below. It is interesting
to note that it introduces a log(ldg finite size scaling cor-
rection. A similar correction as been found [i@7] for the
Potts model withg=4.

The corrections due to the other terms of Ekf) become

DB
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FIG. 1. (a) Lee-Yang zeros for various values in thez complex

rapidly negligible as can easily be seen by a perturbatiowaneB:ZT: 1.9. (b) Local behavior near ta=1.

expansion.

One finally obtains the following asymptotic form for the
Lee-Yang zeros of the truncated power law:

—1 1 ) 7—1 s
—log G +§Iog log A +4ke
L L
Re[t (k)] ~ ™ ,
(22)
km 1 27k
Im[tL(k)]~A—L—A—Larcta 1 (23
lo
’ Az‘l)

The term lodlogJ(7—1)/A{ ']} introduces ak dependence
which implies in particular that the zerdm the z plane do

not lie on circle but on a more complicated curigee Fig.

1). This dependence remains important, even for the first
zeros, up, to very largk, especially ifr is close to 1. Indeed,
for a fixed k the term Ioé[(r—l)/A[’l] dominates the term
4k?7% only for L>[(r—1)e?"¥¥F(=1) (say, for =
=1.258=2.67 this corresponds tola>1500).

The arctan term in the imaginary part acts essentially as a
phase term—(1/A,)arctaf2mk/log[(r—1)/A{ ]} which is
slowly varying(in the k variable compared to the dominant
term 2ka/A . Furthermore, since the arctan is bounded
above byw/2 it is rapidly negligible ak grows. Therefore,
one can consider with a good approximation thaftirtk) ]
~2kmlA, .

The argument of; (k) formally corresponds to the angle
that the Fisher zeros do with the real axis in critical phenom-
ena. For a power law with<<1 this angle is independent of
L as discussed above. Conversely, forl it is given by
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2k

| —1
—10
g Afl

One observes thereford@garithmic deviation to the normal
scaling on the argument of the (k)’s. The conclusion is

therefore that, though the truncated power law obeys the

classicalffinite size scalindorm (9), the Lee-Yang zeros dis-
play nevertheless amnomalous scalinglue to the exponent
1 (see Fig. 2

In the z plane the zerog, (k)=e't® are approximately
given by

RL(K) =z (k)[~1+Rdt (K)], (25)
14 T T T T T
) k=5
HHHHHHHHHE " k=4
k=3
k=2
0.4 |
k=1
0.2 L ! L

20 40 60 80 100 120 140 160
L

(a

2 T T T T
+1=0.2
18 o01=1.21 i
a1=1.9
16 g
14 8
12 - 8

Arglt,(1)]

06 | E

04 F .

02 1

0 1
20 40 60 80 100 120

(b)

FIG. 2. (a) Argument of the Lee-Yang zeros in thhecomplex
plane versud. for variousk values,8=2,7=1.9. (b) Normal (r
=0.2) and anomalousrE1.21,7=1.9) scaling of the angle with
the real axis for various value.

+1|
2'%9

(29)

-1
log? T — | +4k*m?
Al

2km  2kw
0L(k):|m[tL(k)]~A—L=F- (26)

Therefore the arguments (k) of the zeros in the complex
plane are uniformly distributed ip— 7r, 7] with a good ap-
proximation[Fig. 3(b)].

Finally, one can determine the exponent® from the
Lee-Yang zeros. The exponeftcorresponds to the scaling
exponent of the correlation length . Eq. (26) providesa
straightforward wayto compute it. Furthermore, the expo-
nent 7 can be obtained from Eq22). The term 4r2k? cer-
tainly rapidly dominates the term 14gr—1)/A] '] in the
modulus R, (k) as k grows. This isa fortiori true for k
~ A which corresponds to the zeros the farthest fram
=1. Consequently,

A[_l\/l 5 —1
—1 o9 ATTL

-
L

UAL

R.(60)~ +462A2

20A7 YN

1

(27)

If one takesk= A /2 (corresponding to an angke), one has

_ A log[R ()]
7= 1m

—_—, 28
M TogA) 29
which allows a possible determination effrom the scaling
of the Lee-Yang zero§Fig. 4(b)]. Note, however, that the
convergence is logarithmic ih.

3. Numerical checks

Since it is easy to generate numerically a power law dis-
tribution one isa priori free to choose any values faerand
B. However, the closer is to 1 the slower is the conver-
gence to the asymptotic regime where the formulas obtained
in the previous section hold. More precisely, the rate of con-
vergence is essentially governed by the proda¢r—1).
The closer isr to 1 the larger has to bg. But the largerB,
the faster the degree of the polynomial increases Wwittnd
therefore the time needed for the computation of the zeros
increase. On the other hand, since the theory developed here
is independent of the actual value B8fr (provided 7>1),
we mainly studied examples whefz=2 andB=2.2 which
gives a reasonable increase in the polynom degree,rand
=1.9 such that the produ@(r—1)~2.

We first depicted the pattern of zeros, for different sizes,
in Fig. 1. One notices the slow convergence to the unit circle,
and the shape of the curve nearzte 1: this is not a circle.
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FIG. 3. Lee-Yang zeros in the complex plane, versuk for
various L values.(a) Real part multiplied byA, . (b) Imaginary
part.

(b)

FIG. 4. (a) Argument of the fifth Lee-Yang zero in tlrEcomplex
plane, versu4 for various B values.(b) R (7) as a function olL

for various 7 values. The fitting curves are plotted using lines.

We plotted Fig. 3 the real and imaginary part of the zeros In Fig. 2(a) we plotted the argument of (k) as a function
in the t plane. For the real part we tried a fit of the form of L for k=1, ...,5. Wenotice the logarithmic deviation to
r(k)={—log@)+3 Iog[loc_:|2(a)+47r2k2]}//\L whereais a free  the normal scaling as predicted by formy2x). We tried to
parameter. The formul&2) givesam:(r—l)/A[’l but, in  fit these curves with a fit of the form arci@kw/a[log(x)
the several approximations we made, we neglected some y]+3log{a?[log(X)+ y]*+4k?7?}), where«,y are free pa-
constants, and one expeet$o be different from the theoret- rameters. In Fig. @) we show the different scaling occur-
ical value, with an error that should decreasé agsows. The  ring for 7<<1 (normal scaling or 7>1 (anomalous scaling
result of the fitting is represented FigaB for the 200 first Finally we argued above that the exponefAtand = can
zeros. We found indeed that the experimental valyg, is  be determined with a good accuracy from the scaling of the
closer and closer to its theoretical valuelafcreases and zeros. In Fig. 4a) we plotted arfz, (5)]= 6,(5) as function
that our approximation is better and bettetascreases. For of L for B=1.57=1.6;4=2,7=1.21,8=2.27=1.9, andL
L=50, a;,=7.87X 10’4,aexp= 5.6X10 4+4x10°; for L =20, ...120. We choose the fifth zeros rather than the first
=100, a;,=2.26X 10‘4,aexp= 1.5x10 4+3%x10 ®andfor  ones since for the first zeros the correction coming from the
L=150, a;=1.09x10 % ae,,=7.1x10°+810 7. The arctan term in Eq(23) influences slightly the scaling for
imaginary part is plotted in Fig.(B) together with the theo- small L. We tried a fit of the formC/x? where C;,~ 107

retical prediction It  (k)]=2=k/L? (straight lineg. We
noted a slight deviation of the first zeros ta2\ | due to the
correction term in Eq(26).

=31.45.... The fitsshown on the figure gave, respec-
tively, B=1.507+0.002;3=2.007+9x10 %;3=2.205-
% 0.001.
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For the determination of we used Eq(27) for 7=0.2, (ii ) img(x)=1.
1.21, 1.9, ang3=2. We have interpolated the data with a fit x—0

form ef7109@ \where a, 7 were free parameters. Far Multifractal scaling. In th Kadandt al
=20, ... 120, we found, respectively, 0.1998(25.10°°, ultifractal scaling.In the same paper, Kadanodt al.

1.207(5)+7.10°5, and 1.89(5¥ 0.0001 for the value of, | +3] discussed another form of scaling, that is
This is satisfactory especially when taking into account the

. n
smallness of thé's we considered. log _)
log[PL(m)] _ [ "l -
B. General case: the structure of the cutoff L L ’
log " log "
0 0

The observed probability distribution of avalanches ob-
servables in SOC models is in general a powerlaw truncate\gl
by a cutoff function associated with finite-size effects. Ex-
cept for a few caseg38], the analytic form of the cutoff is
not known. Consequently, various scaling forms have bee
proposed in the SOC literature. In this section we grasp the P, (n)=L(logn/logL), (32)
most common scaling forms and discuss their effect on the

Lee-Yang zeros. We also investigate the effect of the samfhis representation is called by the authorsfana repre-

heref is universal and does not depend explicitly bn
Lo,ng are some constants that can be omitted by a suitable
rr]edefinition of the quantities, then

pling cutoff inherent to numerical simulations. sentation,a being the quantity log(ny)/log(L/Ly). In this
, , case one has a whole spectrum of scaling indices, i.e., all the
1. General assumptions about the cutoff function values taken on bdf/de. In the general caskis nonlinear.

Since P, (n) is expected to converge to a power law Then the universality class is given by the functipmather
Kn~ 7 one can write, without loss of generality, the finite sizethan by a finite set of critical exponents. In this case, the
probability under the form scaling exponents are nonlinear functionsgof

Finite size scaling violation and convergence to a power

L law. Another scaling form has been introduced by Lise and
PL(n)=—f.(n), 1sn<§ (29  Paczuski[16] from numerical simulations on the Olami-
n Feder-Christensen modLise and Paczuski analyzed their

whereC, is a normalization constant dependinglarf, (n) data with the following form forP, (n):

is the finite size cutoff. P (n)=C n~7LFuloam/ogL) = n=1 . LA (33
The graph obtained from numerical simulations suggests

thatf, (n) is a regular function which obeys where 8, is now L dependentp, <B<« andB, — B asL

o — oo, Furthermore, the numerical plot & (x) in [16] sug-

(i) limf (n)=1, Vn<¢, gests thafF | (x) converges to a “step” functiorY(x— 8) as

L—o

L—o, whereY(u)=0, ue]—2,0, Y(0)=C andY(u)=

—, ue]0,2]. The finite size scaling case corresponds to

FL(x)=log[g(L* #)JlogL whereg is defined in Eq.(30).

This example is quite interesting since it gives an example of

The property(i) corresponds to the pointwise convergence to? Probability distribution violating Eq(30) but converging

a power law(ii) characterizes the observed fact that the tailN€vertheless to a power lalmamely the exponents and 8

of P_(n) decreases faster than any powendg.g., is least are still meaningfyl We remark indeed that the correspond-

exponentially decreasing ing probability distribution isiot multifractalin the sense of
These properties are not sufficient for a scaling theory an§il4] since it is easy to check that the scaling exponents are

further assumptions have to be made. We now discuss vargiven by o(q)=p(q+1-7), Vq=7-1 ando(q)=0,Vq

ous scaling forms that one can find in the literature and alsg-7— 1. This case is therefore intermediate between the

(i) Vp>0, limnPf (n)=0, VL.

n—oo

the numerically induced cutoff effects. finite-size scaling30) and the multifractal cas€82). In the
a finite-size scaling ansatz where zeros in these different cases.

2. Finite-size scaling
: (30

n
fu(n) _g(A_L We show in this section that the behavior of the Lee-Yang
zeros in the finite size scaling case is essentially the same as
g being a universal functionA, =L? is the characteristic for the truncated power law, providegin Eq. (30) fulfills
scale for a lattice of sizk and¢, = aA| wherea is a con-  the conditions(i),(ii),(iii) in the previous section.
stant. The case of a truncated power law developed in Sec.

[l A corresponds to the particular case where 1, andg(x)
is equal to 1 forxe[0,1] and zero otherwise. Note that in  ®B.C. is very grateful to M. Paczuski for illuminating discussions
this case the propertyji) has the consequence that on this topic in Bielefeld.
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It is well known that the moments obey the same scalingtial increase of! V. Therefore, there is a maximum, after
This can be recovered from the generating functinPro-  which h(u,t’) tends to zero with a rate given lfu). Here,

vided 7<2 it scales ag. —eo like h(u,t’) is essentiallyg(u)e''V. Thereforeu, is given by
ZL(t)~1+CLAﬁ_T[Ya(t’)—Yl/AL(t’)]~1 t’g(u+)+g’(u+_)=0 or _t’=—(_jlog[g(u+)]/du, where
—dlog[g(u)]/du is a function which increases faster than
FCLAL Y (1) FCLp(t) ~1+C ALY (1) by (ii). Consequentlyu, diverges ast’—. Since a is
bounded by assumption,, >« for t’ (L) sufficiently large.
(34) But, from Eq.(36) we know that the modulus of thé cor-
responding to the zeros divergelas>o. Consequently, pro-
vided L for is sufficiently large, the zeros lie in a region
def 0 [y whereu, > «. Guided by the wisdom coming from Sec. Il A
Yy(t'):f u~"g(u)(e''=1)du= >, — [ ‘u" " "g(u)du. we can assume that the zeros accumulate onto a cyrve
0 =1 N' Jo which separates the complex plane into two regions. In the
(35 first one, the behavior is dominated by the algebraic part and

Consequently, near to=0, Z, (t)~1+C LFA- DY (tLP) the integral in Eq.(37) is essentially ff,ALh(u,t’)du

andG, (t)~C LAY (tLA). As expected one obtains the ~[1/(r—1)][A{”*—a" ']. In the second region, the expo-

same scaling as for a truncated power law. The only changeential part dominates. Provided is sufficiently large ¢,

is that the functiorlY depends now on thg function. > a), the variations ofu™ "g(u) are small compared to the
The zeros ofZ (t) are therefore well approximated by increase ofe!’V and this function can be approximated by

a ’ " a At'u
Y (1)~ —C ATt (36) some constantl’y. Hence [{ h(u,t’)du~TgJ{ e “du

~(Lg/t)[e!' *—eT].

which is completely analogous to E(L7). Therefore, the ansequently, for sufficiently largee, the zeros are well
same conclusions hold: E(36) can be fulfilled only if the  approximated by
solutionst| (k) have a diverging modulus ds grows. The
computation of the zeros is essentially the same as in Sec. 1, [—1
Il A with slight complications due to the presence of the —[e" “+ayt’ —ay]=— (1)’ (39)
function g. t o7

One can write

for t—0 in thet complex plane. In this equatidh= At and

wherea;=a” YTy(7—-1), a,=¢".

@ This equation is similar to Eq.19). The zeros are now
ZL(t)~CLAﬁ‘Tf h(u,t")du, (37)  given by
UAL
where nowh(u,t’)=u""g(u)e'". Recall that, by hypoth- W, al’y(7—1)
esis,g(u) is an at least exponentially decreasing function. As K [‘1
u grows from to 0 toe, h(u,t’) first decay likeu™ " until a t (k) =~ ah, : (39

minimum u_ after whichh(u,t’) grows exponentially like

eV, u_ tends to 0 ag’'—o0. More precisely, ift’ is suffi-  Consequently, one finds that the pattern of zeros in the finite-
ciently large, from(iii) g(u) is essentially 1 on the interval sjze scaling case is essentially the same as the power law
[Ou-] and thereforeu_ is approximately given by'u”"  case, up to a correction depending®ii’y. More precisely,
=7u_""1. Consequentlyu_~ 7/t’". Whenu is sufficiently  using the series expansi¢®l) of the Lambert function one
large the decay coming frog(u) compensates the exponen- finds

—Iog(w +%Iog Iogz(w) +4k21721
Re(t ()]~ : 7 VR , (40
2k
|m[tL(k)]~a—AL1 (41)

wherek=1, ... ¢ =aA .
In the z plane this essentially results in a trivial rescaling of the argumeft, [tk)] and a slight change in the modulus
RL(K),

RESTK)~ kL REH(K)M, (42
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where the superscript FS8L) refers to the finite size scalingower law situation.«, = (1/al’y) VaA js therefore a scaling

factor which tends to 1 as expected since the zeros have to accumulate on the unit circlg(42) &g. neglected the more
complicated dependence coming from the log(log) term. This has a small effect on the first zeros but becomes nedligible as
grows. This provides a way to determire . SettingRE"(w) for the farthest zero fromm=1,

RCS(m)

= RPL(77) Ve : “3

KL

The argument of (k)’s is

2k

ard t, (k)]~arcta

dt (k)] =TI

log — 1 + 4k
AT

44
(arg(r— 1) 49

)
AT? 2%

L

The cutoffg modifies, therefore, the value of the angles buteffect is closely related to the anomalous scaling of the Lee-
not the scaling Yang zeros since it appears for a critical exponentl.
We numerically checked these result in the following In numerical simulations, one computes an empirical dis-
case. We generated a probability distribution given by tribution P*P(n, w) = M(n,w)/\ where \is the total num-
0 ber of avalanches observed during the simulation and
_ —r| _ B N(n,w) is the number of times an avalanche of sizeas
PL(n)=Cun g( Lﬁ)' n=1... al (45) observed. This number is a random variable depending, say,
on the initial conditiofs), or more generally, on the seed
where used in the random generator. However, one expects the sys-
, tem to be ergodic in a strong sense such tA&t(n,w)
g(x)=e . (46) - P_(n) asN—x for generic choices ofv (see[10] for
. details). However, sinceV is finite, there exists wild fluc-
We fixed the parameters to the valugg=2,7=1.9y  (ations in the tail of the distribution. Furthermore, the ava-
=2.5a=1. We show in F|g. 5 the collapse of the curve of Janches such thatP, (n)<1/\ have a small (though
zeros to the corresponding curve for a power law with the,onzerd) probability to be observed in a numerical simula-
samer, 3. « was computed from the rati63). We found  {jon and this probability decreasesmincreases. Obviously,
«=1.0001 forL =100. there are several methods such as smoothing or binning, al-
lowing us to reduce the effects of noise in the tail.
There exists, however, another more subtle effect. In all
We would like now to point out a very simple way to the examples of numerical computations that we have found
violate the scaling forn{30) by the only numerical proce- in the SOC literature, the value df is fixed, independently
dure traditionally used in the computation Bf (n). This  of the system siz&his induces a pathological bias affecting
the extrapolation to the thermodynamic limit whatever the

3. Effect of a sampling cutoff

g "POWK  + method used to analyze the empirical distribution. In particu-
0.04 | et FSS 1 lar a violation of finite-size scaling can be observed on
PC*X(n,w) even if the theoretical probability Bn) obeys
0.02 1 Eqg. (30). WhenV/is kept fixed while lincreases, the estima-
tion of the maximal value, that the random variable can
g 0 %y . take (defining the exponenB) is more and more biased.
= Indeed, while the true, diverges ad —o, the empirical
-0.02 | | value &*P(w) converges to a constant. Consequently, the
probability distribution extrapolated to the thermodynamic
o limit from the empirical distribution is biased. The aim of
| umww**"*”‘* i this section is to analyze this effect, which not discussed in

1 1.0002 1.0004 1.0006 1.0008 1.001 1.0012 1.0014 the literature.

Re(z)

FIG. 5. Pattern of zeros in thecomplex plane for the power  "However, since the largest nonzero valueR§t"(n, ) is 1\,
law case,3=2,7=1.9L =100, where the real and imaginary part the events such th&, (n)<1/\, even when observed, are given an
have been multiplied by, and for the FSS casg=2,7=1.9;y incorrect probability by the numerical procedure. The discrepancy
=25a=1L=100. with the theoretical value increasesragcreases.
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Assume therefore th&, (n) is like Eq.(29) with a cutoff  Clearly, werel fixed while N—, thenE[ £7°{7] would con-
obeying Eq.(30). We call F (n)==}_,P.(k) the corre- verge to& . In fact the ergodic theorem gives a stronger
sponding repartition function. Assume now that we performstatement, name|gexpﬁ & almost surely in this case. This
a finite sampling of the probab|I|ty distribution witk'" trials essentially means that for sufficiently sthIE[gex”] gives
?11”- .(.j"xtj\'/k,) V;’hgrexu =1.. .6/|\/are 'l%depin%e'lgc(ier)]- a good estimate af_ . On the other hand, ilis fixed while
ically distributed random variables, with probabi n). ; ; LNy )
Assuyme furthermore, that/ is fixed indeF:)endentIy of.. L increases, thedcorrect.lon terﬁizllF,_d(.n) in Eq. (47) be .
Call ¢P=maxX k=1,...\} the maximal value ob- comes more and more important, leading to a wrong estima-
served in the finite sampling. The repartition function of thetlon of é, . To be more precise fix a valye=10,1[, such that
random variablee? is F/L\[(X).. Its average is given by F is considered as non-negligible as soonFq{\E(n)>y
Hencey is somehow arbitrary herésay close to 0). Since

éL FN(n) is strictly increasing the equaﬂdﬁ”(x) yeF L (X)

E[&0=6 2 FV(n). (47) —yl’/\ has a unique solutior, =x, (y), Yye]0,4[. If L is
smaII (or if N is sufficiently large x, ~£&, and therefore
(n) is essentially nonzero far~ ¢, . In this case the term

B Ay : y
8We assume here that the trials are independent for simplicity. InEn 1FL(n) in Eq. (47) 'S_ negligible compared tg, . L
SOC models the avalanches are not independent, though fortfinite O the other handy, is bounded from above by fanite

the correlation decay can be fdittis exponential in the finite size Valuex such that* (x) = KZh_4n "=y whereF* is the

Zhang model repartition function of the I|m|ting probability?* (n). Con-
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sequently, ad increases, for any 10,1, x. (y)/é,—0. violates the finite size scaling and the data collagsgrther-

Hence, the functior;(x) is non-negligible on a larger and more, the scaling of the moments is also affected by this

larger interval, whose length scales ligg. Therefore, the effect. Indeed the moments are obtained empirically from the
. . ex i

sumzﬁilF{V(n) in Eq. (47) becomes more and more impor- formulam{*?(q)=3,_,% pan‘EXF’(n) and the scaling expo-

tant, yielding a decrease in the expectation of the empiricahents are extrapolated from the formula

maximum.

In the range ofL values where this effect starts to #2%(q) = lim logfm*"(a)]
manifest one has x ~& . Hence, =t F{(n) .. log(L)

&L N, N, . .
~>°L F'(n) and F;'(n) has only to be estimated in the
n—x FL(W () Y WhenL is sufficiently small £*P~ aL? since the correction

; _ & - . .

interval [x & ]. Furthermore,F (n)=1-2" P (nN)~1  gue to the finite sampling has essentially no effect. Then one
—CLfﬁLu”g(u/AL)du. When x, is close to & ,  obtains the right scaling exponew{q) from the data. How-
Féumrg(u/A ) du~ (& —n)& "g(a) for ne[x, & ]. Fur-  €ver, wherl increases, one observaspurious deviation of

n L - . . .
thermore, in this range, 2C, & "(£.—ng(a) is small the curve m(q) from the theoretical valueThis effect is

compared to 1. Hencef1'(n)~1—NC & (£.—n)g(a). |||ustrate_oly|n Fig. 6 In the case= .1'9‘62;7:2'5"!:(2);
The equatiorF/L\/(x)zy has therefore an approximate solu- g(x)=e"" where two samples W'thl and N=1
. B R § N were generated. Note that the effect is more prominent when
tion x =& —[(1-y)/NC g(a)]é[. Then = F{(n) q increases.
~2§L:XLF/L\/(H) can be roughly approximated by a linear = Thjs computation shows therefore that for the values
interpolation giving Eﬁl_:x FMn)~ (& —x)/2=[(1—y)/ =1 numerical problems appear, induced by the finite size
L i i Xp
sampling. Not only the fluctuations @f’chrease but also

NCLg(a)1¢( . o _the averaged valu&[ &*F] is biased. To our opinion, the
Consequently, the empirical expectation is in this approxi-_ .. ~ "~ s : ) .
mation estimation of the corred;, is the main problem in analyzing

the data from SOC simulations.
—y The analysis of the Lee-Yang zeros for relatively small
E[&00~ & 1- Nc—g[‘l . (48)  sizes can, however, give a fairly good estimate of the values
L9(e) a,B allowing to extrapolateé, to larger size. Indeed, Eq.

Sincer>1 the correction term increaseslagrows. It even- (40 suggests that the argumentte{k) is not too sensitive

tually becomes of the same order &s, but whenL in- (o the fluctuations o&}{; [compared to the fluctuations of

creases one has to add higher order corrections tq4By.  the moments which are of ordet('{)4**~7]. Hence, it is

On the other hand, were<1, then would the correction possible to find the values af,3. We give an example in

term become negligible ds grows. Fig. 7 where the empirical data are the same as those used
The L value where the effect starts can be estimated by for the computation of the moments. As for the truncated

power law, we found a slight deviation for the first zero.

L~( 1-y )_W(T_l) (49) Interpolating the values fronk=1,...,10 wefound «

NC g(a) =2.094+0.006+ 0.098=2.002+0.003 which gives quite a
good estimate.

Consequently, this effect is more prominent wig{r—1) is The real part of Lee-Yang zeros and, consequently, the

larger. argument, is more sensitive to nonextensive sampling effect.

The ratioa, =E[ £ {]/L” is therefore not equal to a con- An analytical expression is obtained if one modifies the
stanta as it must be, but i dependen{see Fig. 6a)].  equationg22)— (24) by replacinga by «, . The argument of
Clearly, for sufficiently large- the corresponding probability t, (k) writes now

2k

I'y(r—1
log? ST g(fl ) + 4K2 772
Al

The finite sample effect is illustrated Fig. 8 for the first zero.=10® follows the theoretical curve with a good accuracy.

One observes a deviation from the real curve #6=10°.  This shows that the determination of the zeros is robust with
This can be used as an empirical way to defineltivehere  respect to fluctuations in the coefficients of the polyndm

the empirical distribution is not biased. Note that the curve ofThis is in fact an easy consequence of the implicit function
the argument of the first empirical zero obtained for  theorem.

ard t, (k)]~arcta

(50
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FIG. 8. Effect of a sample cutoff on the argument of the zeros in ?
thet plane. =
Looking at Figs. @) and 8 one could argue that the mo-
ments are less sensitive than the Lee-Yang zeros to a siz
independent sampling. However, the sensitivity of the mo-
ments increases with the degreeTherefore, to detect this

effect, one has to compute the moments for higfthis can
clearly cause numerical problems. On the other hand, the

Lee-Yang zeros integrate information about all order mo- In(L)

ments and the sensitivity can be detected easily. We believ®

that this kind of analysis is prior to any investigation con- FIG. 9. (a) Argument6, (5) for the truncated power la@OW)
cerning in partipula_r the multifractal nature of the scaling.  , yuncated power law with-dependeng (V), a probability distr}-

_ Our conclu_5|on is the_refore _twofold. Firstly, some cau-y tion of the form(33) with F,(x) given by Eq.(51) (NL), and a
tions are required when increasihgo extrapolate the ther- itifractal distribution(MF). (b) Argument oft, (5).

modynamic limit. If V' is kept fixed,too large L will give

wrong estimations. In this case at least, the bigger is not thgcajing form. This remark opens the perspective to develop a
best. This effect can be compared to the critical slowingyeneral theory allowing us to extrapolate the characteristics
down in the literature about critical phenomena. However, topf probability distributions from the behavior of the Lee-
the best of our knowledge we do not know any example inyang zeros of the empirical generating function. However,
the SOC literature where this effect has been discussed. Segz have not yet been able to provide an equivalent of the
ondly, the Lee-Yang zeros nevertheless give useful informaynaivtic forms Eqsf(20) and (39)] that would be helpful to
tion. They can be used to determine the range- ofalues  gperly extract the features of the probability distribution
where the data are not too affected, and, in this range, thgom the Lee-Yang zeros. The development of such a general
simple scaling of the imaginary part allows us to determineiamework is under investigation and will be published in a
the scaling of¢, . This can be used with other methods suchseparated paper. We give a few numerical examples in Figs.
as binning, or smoothing, to determine the exact d|str|but|org(a) and gqb).

from the empirical one. We investigated first the cas@®3) where F (x)=Y(x
h ’ —BL). In this case, the computations done in Sec. Il A es-
4. Other scaling sentially hold, with ag depending orL. In particular, Eq.

In this section we investigate briefly the other scaling(26) suggests that thie dependence g8 should be detected
forms discussed in Sec. Il B. Our main conclusion is that theon the argument dof, (k), 6, (k). In Fig. 9, we plotted, (5)
Lee-Yang zeros are highly sensitive to the changes in then the caseB =pB[1—(1/L)], where 8=2,7=1.9, andL
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FIG. 10. (a) Zeros in thez plane forL=30, e=0.1, N=1CF,
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probability distribution are representeth) Examples of empirical

PHYSICAL REVIEW E65 036131

z
=0
<
g k=10
k=
k=4
0 5
10 k=1
log, (k)
(a)
3 T T T T
. 1
- - E-Eo 1,
==
2t i
1} $ |
¢ T o
____________________ .
- KON a
)
o 1 1 1 1
0 2 4 6 8 10

(b)

FIG. 11. (a) Argument of the five first Lee-Yang zeros in the
plane versud for Ec=2.2,=0.1. The full lines corresponds to a
fit. (b) Plot of the fit parametera, 8 versusk.

and smoothed probability distributions used in the computation ofyrows. A smalle; gives a slow convergence and therefore

the zeros.

=20,...120. The theoretical prediction is6,(5)
=107/LPE- VI We tried a fit of the form f(x)
=107/LAL L] where a, 8 are the fit parameters. We
found «=1.014(8)+0.00068=2.013(9)*=0.0001, which is
quite satisfactory.

We also tried a more general form B (x) with a non-
linear F|_ converging to a step function és— o,

L(X)=— an U x—B——| |1, xsB——.
L2 L2
(51)

In our simulations,=2,7=1.9@;=0.1a,=1. L% con-
trols the rate of approach &f (x) to the step function ak

has an effect up to very larde

The result for the argumer#t, (5) is also represented in
Fig. 9a. We note that the curve is indistinguishable from the
previous case and therefore the imaginary part, ois not
sensitive to the nonlinear effect of the tanh, but gives the
right @,. On the other hand, we noted that the argumertt of
is sensitive to the nonlinear effeldtig. Ab)].

For the multifractal case we studied the case where the
multifractal spectrum has the forfi{x) = C— rx—ax?. This
is the lowest degree nonlinear form bEompatible with(i)
and (i) and with the convexity of. The values ofe=1,8
=2,7=1.9 were the same as for the previous examples. We
observe[Fig. 9a)] that 6, (k) is not sensitive to the multi-
fractality and gives therefore the riglt, 3. Consequently,
our method to estimate the degree is also valid for a multi-
fractal distribution(32). On the other hand, drg (k)] is
modified for a multifractal distribution, but we are not yet
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able to analyze this variation. All the results are depicted in 09 . . . '
Fig. 9a) (6.(5)=Im[t.(5)]) and Fig. 9b) (ardt,(5)]). 085

0.8

I1l. AN EXAMPLE OF A SOC MODEL 0.75 -ll’ ‘

In this section we study an example of the Lee-Yang zeros—, 97
computation for a SOC model, the Zhang model, defined asg 065
follows. Let A be ad-dimensional sublattice ifi, taken as 2
a square of edge length for simplicity. Call N=#A =LY,
and let’A be the boundary oA, namely the set of points in
7Z\A at distance 1 from\. Each sitei e A is characterized
by its “energy” X;, which is a non-negative real nhumber.

Call X:{Xi}ie , a configuration of energies. L&, be a real,

strictly positive number, called theritical energy and M
=[0EJN. A configurationX is called “stable” if X e M
and “unstable” otherwise. IX is stable then one chooses a
sitei at random with probability N, and add to it energy
(excitation. If a sitei is over critical or active (X;=E_,), it
loses a part of its energy in equal parts to its Reighbors
(relaxation. Namely, we fix a parametere[0,1] such that
the remaining energy dfis €X;, after relaxation of the site ~ We first present in Fig. 1@) the experimental zeros in the

i, while the 2 neighbors receive the energy %)X;/2d.  zcomplex plane fot. =30, A= 10°. In order to see the effect
Note, therefore, that the energy is locally conserved. If sevof the noise, we also computed the zeros of a smoothed
eral nodes are simultaneously active, the local distributiorversion of the empirical probability distributidirig. 10(b)].
rules are additively superposed, i.e., the time evolution of thdhe smoothing method uses a binning procedure, followed
system is synchronous. The succession of updating leadin@y a spline extrapolation, allowing us to fill the “holes” ex-
an unstable configuration to a stable one is callechea- isting in the empirical probability distribution. These holes
lanche The energy is dissipated at the boundaries of thecorrespond to events that did not happen during the trial and
system, namely the sites éA have always zero energy. As consequently are given a zero probability. In the numerical
a result, all avalanches afigite. Consequently, whatever the computation of the zeros, these holes correspond, therefore,
observablen, £ < for finite L. The addition of energy is to vanishing coefficients in the polynoft), which produce
adiabatic When an avalanche occurs, one waits until it stopgProblems in the convergence of most of the root finding al-
before adding a new energy quantum. Further excitation§orithms. Our numerical procedure seems, however, to be
eventually generate a new avalanche, but, because of tiigbust with respect to this effect.

k=2

k=1

FIG. 12. Argument of Lee-Yang zerog (1),t (2) for Ec
=2.2e=0.1. Full lines indicate the interpolation of the empirical
curves obtained from the sampling witt=10°.

adiabatic rule, each new avalanche starts famty oneac- As argued all along in this paper, the argumen(k)
tive site. It is conjectured that a critical state is reached in th@rovides a way to determine the exponghtharacterizing
thermodynamic limit. the maximal avalanche size. We plot in Fig(dlthe 6, (k)’s

Though it has long been believed that the Zhang modefor k=1, ... ,5versusL. We note thaty, (k) is quite robust
obeys finite size scaling30), a recent paper revised this to noise and gives therefore a reliable way to meagljee
point of view and claimed that the Zhang model does noiWe used a fit form Zk/aL?, wheree, 8 are fit parameters.
even have a multifractal scalingput no alternative scaling We found a slightk dependence for the first zerpas ex-
was proposed15]). We will not solve this debate in this pected from Eq(23) if one assumes F3SNe plotted in Fig.
paper. Rather we will come to two conclusions. First, be-11(b) the extrapolatedr, 3 versusk. For k>3 these values
cause of high sensitivity of the model to the sample cutoffseem to stabilize arouna=0.62+0.07 and3=2.59+0.04.
(Fig. 12, one has somehow to relativize the conclusionsin the finite size scaling ansafz and r are related by3(2
about the scaling obtained from the numerical simulations— 7)=2 [25] and 7=1.253 is known from the renormaliza-
This shows that to draw any reliable conclusion on the scaltion group analysis. Therefore the predicted value fois
ing one has to increaghe sample with the system sizeg., 2.667. Despite the smallness of thewe considered, the
like LA). This will clearly be rapidly intractable even for the computed value is not too far from the predicted one. How-
fastest computers. Secondly, the Lee-Yang zeros give rathever, an accurate determination@®fr and a precise check of
reliable extrapolations provided the sikds not too large. FSS would demand somewhat larger size systems, which we

We computed the empirical probability distribution of were unable to generate for this illustratiqgiNote that the
avalanche sizeB*A(s) where the size is the total number of main problem is not the computation of the zeros, since there
relaxing sites during one avalanche. We did our simulationgxist quite fast and precise root finding algorithms, but the
for lattice sizes fromL=10 to L=55 in two dimensions, generation ofP{*" itself.)

with E.=2.2e=0.1 with a statistics oveA’'=10° and N/ Finally, we investigate the scaling of the argumgrik)
=10° avalanches. Consequently, was fixedindependently and a possible size independent sampling effect. The main
of L as usually done in SOC numerical simulations. difficulty here is the wild fluctuations i *P. Indeed, the
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real part oft, (k) is more sensitive than the imaginary part to tions. It is the same characteristic which leads to a specific
these fluctuations and consequently[&r¢k)] as wild fluc-  sensibility of the SOC numerical experiments to size inde-
tuations. Only the first zeros seem to be robust to this effecpendent sampling effects. We studied carefully this effect on
As discussed in Sec. 1l B 3 these fluctuations &P are  extrapolation to the limit. —c and show that it could pos-
intrinsic to the empirical computation d?;*” and cause sibly mimic important effects such as multifractality. We no-
problems in the extrapolation to the thermodynamics limit,tice that the argument of the zeros in tvelog(z) plane is a
whatever the method used. We plotted in Fig. 12 the argugood test of this effect.
ment of the two first Lee-Yang zeros in thelane, versus. We show that the arguments of the first zeros in the
Our simulations suggests that the Zhang model is sensitive plane of the generating functio(z), is rather insensitive
the size independent sampling. Note in particular that théo these effects, statistically robust, and provides a nice way
values ofL that we used in our computation are quite smallerto compute the SOG@ and parameters. Using the standard
that the ones found in the literature and the effect is alreadiKadanoffet al. scaling form[13], we verify that the param-
significant forA’<1CF. eter’s values as extracted from numerical simulations were in
This shows clearly that a reestimation of the conclusiongjood agreement with the theoretical input of the model. This
drawn from the numerics in the Zhang modaind also, last result gives us some confidence to extract the values of
maybe, for some other SOC modeshould be done in light these parameters from Zhang's model numerical data. Notice
of this effect. On the other hand, our approach suggests th#éat these results have been extracted from medium range
there may be no need to go to gigantic sizes provided thsimulations. This shows up once more for the power of the
finite lattice size effects are carefully handled. From thisfinite size analysis of the critical phenomenon.

point of view, analytic formulas like Eq44) might provide This paper is(with [20]) a first step toward the scaling
a way to analyze these effects. theory of the SOC system from the behavior of the Lee-Yang
zeros. The next step would be the definition of the exponents
CONCLUSION characterizing the approach to criticality, like the exponents

. o a,f,v in statistical mechanics and their link to the scaling of
In this paper we have shown that the finite size study okne zeros.

the SOC-like probability distributions leads to similar Lee-
Yang or Fisher phenomenon as in statistical physics models
near the critical point. This implies that the convergence of
the SOC state to a critical state with power law statistics can
be analyzed in a similar way as equilibrium statistical me- This work has been partially supported by the Zentrum
chanics. More precisely, the way the zeros of the partitiorfuer Interdisciplinaere Forschun@IF) of Bielefeld (Ger-
function accumulate on the real axis, when the size of thenany), in the frame of the project “The Sciences of Com-
system grows up, provides relevant informations on the critiplexity: From Mathematics to Technology to a Sustainable
cal structure of the observed system. In particular, it permit&Vorld.” B.C. warmly acknowledge the ZIF for its hospital-
us to measure useful critical indices of the underlying theoryity. He also thanks the CNRS for its support. He is grateful to

Moreover, we have shown that the size of the SOC modPh. Blanchard, T. Krueger, P. Bak, and M. Paczuski for illu-
els power exponentr>1, leads to a comprehensive viola- minating discussions while in Bielefeld. We also thank G.
tion of the standard scaling laws. We give a approximateBatrouni and K. Bernardet for computer facilities and useful
theory of this effect well confirmed by numerical simula- references.
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