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Anomalous scaling and Lee-Yang zeros in self-organized criticality
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We show that the generating functions of probability distributions in self-organized criticality~SOC! models
exhibit a Lee-Yang phenomenon@Phys. Rev.87, 404 ~1952!#. Namely, their zeros pinch the real axis atz
51, as the system size goes to infinity. This establishes a new link between the classical theory of critical
phenomena and SOC. A scaling theory of the Lee-Yang zeros is proposed in this setting.
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INTRODUCTION

In 1988, Bak, Tang, and Wiesenfeld~BTW! @1# proposed
a mechanism in which a dynamical system reaches ‘‘spo
neously’’ a stationary state with some features reminiscen
a critical state. More precisely, by its only internal reorga
zation in reaction to~stationary! external perturbations, a
system organizes into a state with scale invariance and po
law statistics. This effect, called self-organized critical
~SOC!, was quite unexpected, since usually the critical st
of a thermodynamic system needs a fine tuning of some c
trol parameter~temperature, magnetic field, etc. . . . ! which
is at first sight absent from the model introduced by BT
and from the many variants proposed later@2,3#. Further-
more, the stationary regime corresponds to a nonequilibr
situation where the~stationary! flux of external perturbation
is dissipated in the bulk or at the boundaries, generatin
constant flux through the system. As a consequence, one
erally believes that the usual equilibrium statistical mech
ics treatments using the concepts of Gibbs measure, free
ergy, etc. . . . cannot be applied for the analysis of SO
systems.

On the other hand, it is also believed that concepts
universality classes, critical exponents, order parame
etc. . . . ,borrowed from the equilibrium statistical mecha
ics of phase transitions, are still relevant in SOC. Actua
the identification of universality classes is one of the m
goals in the SOC literature. However, since these conc
are not defined via a thermodynamic analysis, alterna
definitions are used. The dynamics of SOC systems oc
ring in chain reactions or ‘‘avalanchelike’’ events, a set
observables characterizing the avalanches, size (s), duration
(t), area (a), etc. . . . , aredefined. Fix such an observabl

say N, and compute the related probabilityPL(n)5
def

Prob(N
5n) at stationarity for a system of characteristic sizeL. The
numerical simulations show that the graph ofPL(n) exhibits
a power law behavior over a finite range, with a cutoff c
responding to finite size effects. AsL increases the powe
law range increases. This leads to the conjecture that aL
→`, PL(n) converges to a probability distributionP* (n),
with a power law tail having an exponenttn called thecriti-
cal exponentof the observablen. It seems commonly admit
ted in the SOC community that a classification of the mod
can be made by the knowledge of their critical expone
1063-651X/2002/65~3!/036131~18!/$20.00 65 0361
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~‘‘universality classes’’!. Consequently, a large effort ha
been devoted to the computation of these quantities.

Considerably less efforts have been made to establis
clear foundation of the basic SOC concepts and to cla
their connection to their classical statistical mechanics co
terpart@4,5#. Clearly, this is a hard task since even prelim
nary notions like ‘‘state’’ or ’’thermodynamic limit,’’ though
intuitively clear, suffer from a lack of precise mathematic
definition in this setting. In discrete automata like the BT
model@6# the state is the unique ergodic probability measu
mL , of a discrete Markov chain, finite whenL is finite. In
continuous dynamical systems like the Zhang model@7#
there exists typically infinitely many ergodic measures a
therefore one has to add additional constraints to define
statemL in a nonambiguous way@8–10#. The probability
distributionsPL , for the observablesa,s,t, . . . aredirectly
obtained frommL @8,10# but they contain less information
The observablea,s,t are simply indicators of the dynamics
There is noa priori reason to believe that the knowledge
PL(s),PL(a),PL(t) or even of the joint probability
PL(a,s,t) gives all the relevant~that is, allowing us to clas-
sify the models into universality classes! information about
the statemL .

The thermodynamic limitL→` and the supposed ‘‘con
vergence’’ ofmL to a ‘‘critical state’’ poses deeper problem
since even the proof that there existsindeeda limiting state
and that the probability distribution of avalanche observab
are still defined in this limit remains to be done, for mo
models. The usual classical statistical mechanics const
tions of the thermodynamic limit like the Dobrushin
Landford-Ruelle’s~DLR! @11# cannot be directly applied be
cause of thea priori absence of a Gibbs formalism. On th
other hand, the methods used in interacting particle syste
allowing us to define the dynamics in the thermodynam
limit, on the basis of the Hille-Yoshida theorem and the pro
erties of Feller processes, requires locality conditions wh
are broken in the SOC model. One has then to develop
ideas for non-Fellerian Markov processes and this has o
been done in a few examples@12#.

But one of the main problem isthe treatment of the data
obtained from finite size systems simulations itselfand the
extrapolation to theL→` limit. Indeed, though it was be
lieved in the earlier SOC papers that this extrapolation
be handled by classical finite-size scaling@13#, further inves-
tigations proposed alternative scaling@14–16# and, at the
©2002 The American Physical Society31-1



ap
d

n
,

ch
ee
h
a

r-
o

o

i-

m
os
th
ch
e
ro

r
e

op
’’

n-
r
w

hi
ts

b-
e
-
r

o
e,

fo

s
n

e

te
sa

y

s-
ou
o
t

al
the
f

ee-
r
f a

s
m-
We
but
toff
can

the

l

n

B. CESSAC AND J. L. MEUNIER PHYSICAL REVIEW E65 036131
moment, there is no agreement on which scaling form
plies. Consequently, a lot of efforts have yet to be devote
the understanding and analysis of SOC models.

Though the analogy between self-organized criticality a
usual critical phenomena is the core of the SOC paradigm
is remarkable that, up to now, some well developed te
niques of analysis of critical phenomena have not b
adapted to the study of SOC models. A phase transition
different manifestation. It is in particular characterized by
singularity of the thermodynamic potential~free energy,
pressure!. At a phase transition point, and for suitable inte
actions, the free energy, which is the generating function
the cumulants, exists in the thermodynamic limit but it is n
analytic ~in a kth order phase transition it isC k21 but not
C k). In many examples, the failure of analyticity is man
fested by the Lee-Yang phenomenon@17#. For finite size sys-
tems the partition function is a polynomial in a variablez
which typically depends on control parameters like the te
perature or the external field. Since all coefficients are p
tive there is no zero on the positive real axis. However, in
thermodynamic limit, at the critical point, some zeros pin
the real axis atz51, leading to a singularity in the fre
energy. The finite-size scaling properties of the leading ze
and of the density of zeros near toz51 determine the orde
of the transition@18# and also the critical exponents in th
case of a second order phase transition@19#.

A natural question is whether there exists a similar pr
erty in SOC, namely can we exhibit a ‘‘free-energy-like
function, developing singularities in a similar way in the i
finite lattice size limit. Though there exists a huge literatu
about the Lee-Yang zeros, there is, to the best of our kno
edge, no attempt to study self-organized criticality from t
point of view. In this paper, we show that the cumulan
generating function of the probability distribution of the o
servablesa,s,t, . . . have this property. More precisely, th
expected convergence ofPL to a power law induces a Lee
Yang phenomenon for the corresponding cumulants gene
ing function @Eq. ~1!#. We show that this effect is related t
the observed divergence of the moments. Furthermor
scaling theory of the Lee-Yang zeros is proposed.

After some preliminaries~Sec. I!, we give explicit analyti-
cal results~Sec. II! in several cases used as guidelines
subsequent analyses of a SOC model~Sec. III!. We first
study the truncated power law case where the cutoff tend
infinity when a parameterL ~corresponding the lattice size i
SOC models!, tends to infinity~Sec. II A!. We give in par-
ticular an analytic expression for the zeros. Then, we inv
tigate the effect of a smooth cutoff~Sec. II B!. We first dis-
cuss the properties that this cutoff must have, extrapola
from numerical simulations, and present some of the an
found in the literature~Sec. II B 1!. We then explicitly com-
pute the Lee-Yang zeros for a probability distribution obe
ing the finite-size scaling form proposed in@13# and converg-
ing to a power law asL→` ~Sec. II B 2!. We show, in
particular, that when the power law exponentt is larger than
1 there is aviolation of the scaling usually observed in cla
sical critical phenomena; namely, there is an anomal
logarithmic dependence onL for the angle that the zeros d
with the real axis in thet5 log(z) plane. We also show tha
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when t.1 a bias is artificially induced by the numeric
simulations, when the size of the sample used to generate
empirical probability distribution is fixed independently o
the lattice size. This effect can be analyzed with the L
Yang zeros~Sec. II B 3!. We then briefly study some othe
scaling form proposed in the literature and the effect o
finite size scaling violation on the Lee-Yang zeros~Sec.
II B 4!. Finally, in Sec. III, we present numerical simulation
for the Lee-Yang zeros in the Zhang SOC model and co
pare them to the theoretical results obtained in Sec. II.
see no clearcut evidence of finite size scaling violation,
show that this model is quite sensitive to the numerical cu
induced by a lattice size independent sampling. This
raise some doubts on the conclusions about scaling~finite
size scaling, multifractal, or whatsoever! which can be drawn
from some large lattice simulations done on this model in
literature.

I. PROBABILITY DISTRIBUTION AND LEE-YANG
ZEROS

A. The finite size system

Let PL(n)5Prob(N5n) be the probability distribution of
the avalanche observableNP1, . . . ,jL , where the indexL
refers to the characteristic size of the system.jL , the maxi-
mal value thatN takes isfinite, wheneverL,`, but diverges
asL→`. Therefore, the function

ZL~z!5 (
n51

jL

znPL~n!, ~1!

where zPC, is a polynomial of degreejL . In particular,
sinceZL(z) is an analytic function ofz in the complex plane,
all its moments exist. Denote byE@ #L the expectation with
respect toPL(n). Then we define

mL~q!5 (
n51

jL

PL~n!nq5
def

E@nq#L , ~2!

where q is a real ~positive! number. For integerq, the
mL(q)’s are the moments ofPL(n). Note that the normaliza-
tion of PL(n) imposesZL(1)5mL(0)51.

For finite L, ZL(z) hasjL zeros inC that are either rea
<0, or complex conjugate. Denote them byzL(k),k
51, . . . ,jL and order them such that 0,uzL(1)21u<•••

<uzL(k)21u<•••<uzL(jL)21u. Note thatz50 is a trivial
zero, of multiplicity one, sincePL(1).0. Write zL(k)
5RL(k)eiuL(k)511r L(k)einL(k). Since all PL(n) are posi-
tive, ZL(z) has no zero on the positive real axis for finiteL.
Consequently, the logarithmic-generating functio1

log@ZL(z)# is well defined onR1* . Furthermore,

GL~ t !5
def

log@ZL~et!# ~3!

is an analytic function oft. Define

1There is obviously a formal analogy between Eq.~1! @Eq. ~3!#
and a partition function~a free energy!.
1-2
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xL~q!5
dq

dzq
log@ZL~z!#uz51 , ~4!

where z5et. The quantitiesxL(q) are easily expressed i
terms of the Lee-Yang zeros,

xL~q!5~21!q21~q21!! (
k51

jL 1

~12zL~k!!q
. ~5!

B. The ‘‘thermodynamic’’ limit L\`

1. Divergence of the moments and Lee-Yang phenomenon

As already written in the Introduction, a mathematic
definition of the thermodynamic limit in SOC is a difficu
task, beyond the scope of this paper. However, in@20# we
developed a dynamical system approach for the Zh
model. Then, the thermodynamic formalism@21–24# can be
used to define the finite size SOC state of a Gibbs meas2

in this setting. It is then shown that the joint avalanche s
distribution, for example, can be obtained in this formalis
via a proper potential. The corresponding generating func
for the time correlations, called the topological pressure
the formal analog to the free energy. In this setting, it
argued that the critical behavior expected in the thermo
namic limit is manifested by a nonanalyticity of the topolog
cal pressure asL→`, which can be linked to the loss o
hyperbolicity characterizing the limitL→` of the Zhang
model@25#. The loss of analyticity can be easily detected
looking at the generating function~1!. Indeed, its zeros ex
hibit a Lee-Yang phenomenon.

The paper@20# is devoted to dynamical system aspe
and to the mathematical foundation of a thermodynamic
malism for the Zhang SOC model, and the link between
scaling theory of Lee-Yang zeros in classical critical ph
nomena and the general SOC model is not addressed. Th
the aim of the present paper. The results developed here
therefore complementary to@20# but are independent.

The present paper focuses on the analytic properties o
logarithmic-generating functions of the probability of av
lanches indicators, whenL→`. It intends to analyze the
variations in the Lee-Yang zeros properties if one uses
different scaling forms found in the SOC literature. Cons
quently, we collected the minimal implicit assumptions us
in the SOC literature and we infer the consequences t
lead to. This means that the result developeda priori holds
for all SOC models.

It is first assumed thatPL(n) converges to some probabi
ity distribution P* (n), n51, . . . ,̀ . It is furthermore as-
sumed thatP* (n) has a power law tail,3 namely P* (n)

2The particular structure of the Zhang model allows us to sy
bolically encode the dynamics. In the framework of the thermo
namic formalism a Gibbs measure is a probability measure wei
ing the symbolic chains encoding the trajectories with
exponential weight called a potential~see@20# for details!.

3Note that the limiting probability distribution is defined only
t.1.
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5K/nt, for a certain n range, n5n0 , . . . ,̀ , where n0

,`,;L. The numbern0 depends on the model and on th
observable and introduces an extra parameter in the cha
teristics of the probability distribution. In the computation
done in this paper there is no loss of generality is assum
thatn051. Therefore, in the sequel,P* (n) will stand for the
power lawK/nt, n51, . . . ,̀ .

The measured exponentt in SOC belongs to the interva
]1,2@ . K5P* (1) is the normalization constant. Cons
quently,K51/z(t) wherez is the Riemannz function.4 Un-
der the above assumptions, the momentsmL(q) behaves as-
ymptotically like (n51

1` nq2t. This sum diverges for allq
.t21. It is numerically observed thatmL(q) diverges like
mL(q);Ls(q). A central issue is to compute thescaling ex-
ponentsgiven by

s~q!5
def

lim
L→`

log@mL~q!#

log~L !
5 lim

L→`

log@xL~q!#

log~L !
. ~6!

s(q) is an nondecreasing function. Its Legendre transform
found under the name of ‘‘multifractal spectrum’’ in the SO
literature @14# though it has no direct connection with th
fractal geometry of the invariant set.

SinceP* (n) is a probability distribution the limiting gen
erating function

Z* ~z!5 lim
L→`

ZL~z!5 (
n51

`

P* ~n!zn ~7!

is still an analytic function in the open unit disc inC. How-
ever, the logarithmic-generating function ofP* (n) is not
analytic near toz51 since the derivative of orderq.t21
.0 diverge. The corresponding singularity is related to
behavior of the zeros in the vicinity ofz51. More precisely,
fix e.0 arbitrary small, callI L(e)5$ i uuzL( i )21u,e% and
nL(e)5#I L(e), where # denotes the cardinality of a se
Then the divergence ofxL(q) is governed by the zero
which accumulate inI L(e). Namely, the sum~5! contains a
singular term

gs~L,e,q!5~21!q212~q21!! (
k51

nL(e)/2
cos@qnL~k!#

r L
q~k!

~8!

which diverges asL→`, while the remaining part in the sum
is regular and is bounded by (q21)!/eq asL→`.

2. Scaling of the zeros in classical critical phenomena

In the theory of classical critical phenomena, it is possi
to relate the scaling exponents of quantities such as ma
tization or latent heat, susceptibility, etc. . . . to thebehavior
of the Lee-Yang zeros near toz51. There exists a scaling
theory based on earlier works by Lee and Yang@17#, Gross-
mann and Rosenhauer@26#, Abe @27#, Suzuki@28#, Privman
and Fisher@29#, Itzyksonet al. @30#, and Glasseret al. @31#.

-
-
t-

4In general the normalization constant depends onn0.
1-3
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Many analytical and rigorous results are also known~for
example@32–35#!. A lot of efforts have been devoted to th
study of ferromagnetic systems~e.g., Ising or Potts models!
though many other examples have also been studied in
literature. In this setting, one distinguishes the zeros in
complex magnetic field~called Lee-Yang zeros! from the
zeros in the temperature plane~Fisher zeros!. In the first
case, the zeros lie on the unit circle for a large class
models including the Ising’s one.

The Fisher zeros usually approacht50 in the t
5 log(z)-complex plane with a constant anglef ~this is the
case for the Ising model and mean-field ferromagnetic m
els @31#!. This allows us to obtain simple scaling expressi
for the singular part of the free energyf s(t), wheret is the
reduced temperature. In this setting an analytic expres
for f s(t) has been obtained by Grossmann and Rosenh
@26#, and, later on, extended by Itzyksonet al. @30# by using
the renormalization group theory. This approach has b
extended by Glasseret al. @31# to mean-field models. In the
thermodynamic limitf s

6;A6utu22a, whereA6 are universal
constants (6 label the two magnetic phases at low tempe
ture! and a is the critical exponent for the specific heat.
follows from the renormalization group analysis@29# that the
singular part of the free energy obeys a finite-size sca
form:

f s~ t,V!5
1

V
F @ t~AV!1/(22a)#, ~9!

where V is the finite volume andF a universal function.
Accordingly, then first Fisher zeros are given by

tV~n!5F 2p

@A1
2 1A2

2 2A1A2 cos~pa!#

n

VG 1/(22a)

ei (p2f).

~10!

The anglef is related toA6 ,a by

tan@~22a!f#5

Fcos~pa!2
A2

A1
G

sin~pa!
.

This situation, where the zeros approach the singularity w
a constant anglef and where the modulus scales like t
volume to a certain power will be referred to asnormal scal-
ing in the sequel.

It seems a general observation@26# that the zeros lie on a
curve or a union of curves dividing the complex plane
different regions of analyticity ofZ* (z), corresponding to
different phases. More precisely, it has been recently pro
by Biskup et al. @34# that the zeros lie on curves with
simple analytic expression and accumulate in the thermo
namic limit on loci where the various branches of the fr
energy have the same modulus. This last result suggests
a wide extension of the Lee-Yang phenomena can be m
toward dynamical systems near to a critical point. We n
develop this aspect for the analysis of the logarithm
generating function of probability distribution in the SO
framework. In the sequel, we will not distinguish betwe
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the Lee-Yang zeros and the Fisher zeros and we will use
generic terminology ‘‘Lee-Yang’’ for the zeros.

II. SCALING THEORY OF SOC AND LEE-YANG ZEROS

In this section we establish analytical results for vario
finite size scaling forms found in the SOC literature. The
results are then used in Sec. III for the analysis of the e
pirical data obtained from a numerical simulation of a SO
model. As a matter of fact, for finite size SOC systems,
power law is truncated by a cutoff characterized by a len
scaleLL , usually different fromjL . The starting point is
therefore the analysis of a truncated power law with a sh
cutoff at a valueLL . This is a useful example for subseque
analysis since the analytic form ofPL(n) and the cutoff is
known.

A. Zeros of a truncated power law

Assume thatPL(n)5CL /nt,n51, . . . ,jL , whereCL is a
normalization constant andjL5LL5Lb,t.1,b.0. Fur-
thermore, assume thatt,2.

1. Scaling of the moments and logarithmic-generating function

For 0<q<t21, mL(q)→z(t2q)/z(t) and conse-
quently s(q)50. The nonzero scaling exponentss(q) can
be obtained from the following integral approximation
mL(q), which becomes exact in the limitL→`, provided
q>t21,

mL~q!;CLLL
q112tE

1/LL

1

uq2tdu5
CL

q112t
~LL

q112t21!.

~11!

Then, s(q)5b(q112t) for ~real! q.t21. Note, how-
ever, that for finite size, one has additionalL-dependent
terms which have to be considered when extrapolating fr
numerical simulations. It is also interesting to note that f
mula ~11! gives useful information on therate of conver-
genceof mL(q) to a constant forq,t21. Indeed, the con-
vergence isnot uniform in q, namely thecloser is q to t
21 the slower is the convergence rate. This means tha
systematic bias due to finite sizeis introduced in the numeri-
cal simulations when dealing with theq’s close tot21. This
produces a spurious curvature, near tot21, for the function
s(q) extrapolated from numerical data. This effect, whi
disappears asL→`, can lead to a misleading conclusio
since it can be interpreted as an evidence of a multifra
scaling.

The scaling exponents can also be obtained from the s
ing of the logarithmic-generating function. Indeed, the ge
erating function writes

ZL~ t !511 (
n51

jL

PL~n!~etn21!;1

1CLLL
12tE

1/LL

1

u2t~etLLu21!du. ~12!
1-4
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Set t85LLt and

c~ t8!5
defE

0

1

u2t~et8u21!du5 (
n51

`
t8n

n! E0

1

un2tdu

5 (
n51

`
t8n

n! ~n112t!
. ~13!

Note that sincet,2, this integral is finite as can easily b
checked by integration by part. Therefore the commutat
of the integral and the series is allowed.

Consequently,

ZL~ t !;11CLLL
12tc~ t8!511CLLb(12t)c~ tLb! ~14!

and

GL~ t !5 log@11CLLb(12t)c~ tLb!#. ~15!

c(t) is a smooth function oft which vanishes ast→0.
Therefore, fort→0

GL~ t !;CLLb(12t)c~ tLb!, ~16!

which gives the right scaling for the moments by differen
ating with respect tot at t50. One remarks that this scalin
form is analogous to the form~9!.

2. Lee-Yang zeros

From Eq.~14! the zeros are approximately given by

c~ t8!52CLLL
t2152CLLb(t21). ~17!

Sincet.1, LL
t21 diverges.c(t8) is an increasing function

of the real variablet8 which vanishes ast850 and tends to
2` when t8→2`. Furthermore, for anyK.0, c(t8) is
bounded byc(K) in the ball ut8u,K in the complex plane.
Consequently, Eq.~17! can be fulfilled only iftL8(k)’s havea
diverging modulus as Lgrows. On the other hand, sinc
tL(k)5tL8(k)/LL converges to zero,utL8(k)u must grow
slower thanLL . It grows in fact like log(LL) as shown be-
low.

Note that, conversely, whent,1, 2CLLb(t21) goes to
zero in the thermodynamic limit.5 Then, the zeros are for
mally given by

tL~k!5
1

LL
ck

21~2CLLL
t21!;

1

LL
ck

21~0!,

whereck
21 is thekth branch of the inverse ofc in the com-

plex plane. Consequently, the zeros have a simple scalin
these case similar to Eq.~10!. In particular, the argument
does not depend on L.

The observed values of the critical exponents in SOCt
.1, induces anomalous scaling that can be observed on

5Though the limit probability is not defined it is nevertheless p
sible to investigate the finite size scaling properties for the zero
the finite size generating function.
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Lee-Yang zeros. Though the form~14! can be used to com
pute the Lee-Yang zeros, it is easier to use

ZL~ t !5 (
n51

LL

PL~n!etn;CLLL
12tE

1/LL

1

h~u,t8!du, ~18!

whereh(u,t8)5u2tet8u. There exists several techniques
compute the Lee-Yang zeros in statistical mechanics. A s
dard way is to argue that the asymptotic free energy adm
different analytic continuation in different regions of th
complex plane, separated by Stokes lines where the z
accumulate in the thermodynamic limit. Indeed, because
the large number of terms in the polynomial which make
the partition function, the behavior tends to become do
nated by some set of the coefficients. Thus we have diffe
analytic functions in different regions of the complex plan
These functions have oscillating phases but smoothly va
ing amplitude. The zeros locate then on Stokes bounda
where two types of behavior have comparable magnit
@30,31,34#. The Stokes boundaries become cuts in the th
modynamic limit. Across the boundaries the free energy
a regular real part and jumps in the imaginary part@26#.

Applying this strategy to our formal partition functio
~18!, one identifies easily two regions. For realt8, asu grows
from to 0 to`, h(u,t8) first decay likeu2t until a minimum
u25t/t8. Therefore,u2.1/LL when t,t. For u.u2 ,
h(u,t8) grows exponentially likeet8u. Therefore, whent8 is
small the integral in Eq.~18! is essentially dominated
by the algebraic decayu2t and *1/LL

1 h(u,t8)du;

@1/(t21)#@LL
t2121#. On the other hand, for larget8,

u2→0 and the algebraic part is negligible compared to
exponential part. Hence *1/LL

1 h(u,t8)du;*u2

1 et8udu

5(1/t8)@et82et#. This argumentation extends to complext8
and suggests that one can roughly divide thet complex plane
into two regions whereZL(t) has a different analytic form
for sufficiently smallt8 the algebraic part dominates, whil
for large t8 the exponential part is dominant. Then the zer
have to stay at the place where the two forms are of the s
order. Therefore an approximate equation for the location
the zeros is given by

1

t8
@et81a1t82a2#52

LL
t21

t21
, ~19!

wherea151/(12t),a25et.
The solutions ofet8/t852LL

t21/(t21) are given by

tL8~k!5LLtL~k!52WkS t21

LL
t21D , ~20!

whereWk(x) is thekth branch of the Lambert function@36#.
Note that the Lambert function has infinitely many branch
and consequently the equationet8/t852LL

t21/(t21) has
infinitely many solutions. Indeed, in replacing the initial su
by an integral in Eq.~18! we have introduced spurious zero
which have to be removed for finiteL. In the sum~18! one

-
of
1-5
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has a step of integration 1/LL which defines a lower cutoff in
the scales one has to consider. Consequently, only
branchesk52L/2 . . .L/2, where one takes into accou
the symmetry of the zeros with respect to the real axis,
relevant.

The Lambert functionWk admits the following expansion
for large u log(x)u @36#:

Wk~x!5 logk~x!2 log @ logk~x!#

1(
l>0

(
m>1

clm

@ log logk~x!#m

~ logk x! l 1m
, ~21!

where logk is the kth branch of the complex logarithm an
clm5(1/m!) ( 21)l@ l 11

l 1m# is expressed in terms of th
Stirling numbers of the first kind (21)m1n@m

n # @36#.
The double series( l>0(m>1clm$@ loglogk(x)#m/(logkx)l1m%

is absolutely convergent for sufficiently largeu log(x)u @36#.
Since we are only interested in the asymptotic diverge
when L grows, one can therefore neglect the series in
asymptotic. Note, however, that the convergence to
asymptotic regime where the series becomes negligiblis
faster when the productb(t21) is larger.

The term log$logk@L
t21/(t21)#% cannot be neglected com

pared to logk@LL
t21/(t21)# since it contains crucialk depen-

dence for the real part oftL(k) ~see below!. It is interesting
to note that it introduces a log(logL) finite size scaling cor-
rection. A similar correction as been found in@37# for the
Potts model withq>4.

The corrections due to the other terms of Eq.~19! become
rapidly negligible as can easily be seen by a perturba
expansion.

One finally obtains the following asymptotic form for th
Lee-Yang zeros of the truncated power law:

Re@ tL~k!#;

2 logS t21

LL
t21D 1

1

2
logF log2S t21

LL
t21D 14k2p2G

LL
,

~22!

Im@ tL~k!#;
2kp

LL
2

1

LL
arctanS 2pk

logS t21

LL
t21D D . ~23!

The term log$logk@(t21)/LL
t21#% introduces ak dependence

which implies in particular that the zeros~in the z plane! do
03613
he

re

e
e
e

n

not lie on circle but on a more complicated curve~see Fig.
1!. This dependence remains important, even for the fi
zeros, up, to very largeL, especially ift is close to 1. Indeed
for a fixed k the term log2@(t21)/LL

t21# dominates the term
4k2p2 only for L@@(t21)e2pk#1/b(t21) ~say, for t
51.25,b52.67 this corresponds to aL@1500).

The arctan term in the imaginary part acts essentially a
phase term2(1/LL)arctan$2pk/log@(t21)/LL

t21#% which is
slowly varying~in the k variable! compared to the dominan
term 2kp/LL . Furthermore, since the arctan is bound
above byp/2 it is rapidly negligible ask grows. Therefore,
one can consider with a good approximation that Im@ tL(k)#
;2kp/LL .

The argument oftL(k) formally corresponds to the angl
that the Fisher zeros do with the real axis in critical pheno
ena. For a power law witht,1 this angle is independent o
L as discussed above. Conversely, fort.1 it is given by

FIG. 1. ~a! Lee-Yang zeros for variousL values in thez complex
planeb52,t51.9. ~b! Local behavior near toz51.
1-6
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arg@ tL~k!#;arctanS 2kp

2 logS t21

LL
t21D 1

1

2
logF log2S t21

LL
t21D 14k2p2G D . ~24!
l

th
-
t

g

-

is-

-
ned
on-

ros
here

d

es,
le,
One observes therefore alogarithmic deviation to the norma
scaling on the argument of the tL(k) ’s. The conclusion is
therefore that, though the truncated power law obeys
classicalfinite size scalingform ~9!, the Lee-Yang zeros dis
play nevertheless ananomalous scalingdue to the exponen
t.1 ~see Fig. 2!.

In the z plane the zeroszL(k)5etL(k) are approximately
given by

RL~k!5uzL~k!u;11Re@ tL~k!#, ~25!

FIG. 2. ~a! Argument of the Lee-Yang zeros in thet complex
plane versusL for various k values,b52,t51.9. ~b! Normal (t
50.2) and anomalous (t51.21,t51.9) scaling of the angle with
the real axis for varioust value.
03613
e
uL~k!5Im@ tL~k!#;

2kp

LL
5

2kp

Lb
. ~26!

Therefore the argumentsuL(k) of the zeros in thez complex
plane are uniformly distributed in@2p,p# with a good ap-
proximation@Fig. 3~b!#.

Finally, one can determine the exponentst,b from the
Lee-Yang zeros. The exponentb corresponds to the scalin
exponent of the correlation lengthjL . Eq. ~26! providesa
straightforward wayto compute it. Furthermore, the expo
nentt can be obtained from Eq.~22!. The term 4p2k2 cer-
tainly rapidly dominates the term log2@(t21)/LL

t21# in the
modulus RL(k) as k grows. This isa fortiori true for k
;LL which corresponds to the zeros the farthest fromz
51. Consequently,

RL~u!;FLL
t21

t21Alog2S t21

LL
t21D 14u2LL

2G 1/LL

;F2uLL
t

t21 G1/LL

. ~27!

If one takesk5LL/2 ~corresponding to an anglep), one has

t5 lim
L→`

LL log@RL~p!#

log~LL!
, ~28!

which allows a possible determination oft from the scaling
of the Lee-Yang zeros@Fig. 4~b!#. Note, however, that the
convergence is logarithmic inL.

3. Numerical checks

Since it is easy to generate numerically a power law d
tribution one isa priori free to choose any values fort and
b. However, the closert is to 1 the slower is the conver
gence to the asymptotic regime where the formulas obtai
in the previous section hold. More precisely, the rate of c
vergence is essentially governed by the productb(t21).
The closer ist to 1 the larger has to beb. But the largerb,
the faster the degree of the polynomial increases withL and
therefore the time needed for the computation of the ze
increase. On the other hand, since the theory developed
is independent of the actual value ofb,t ~providedt.1),
we mainly studied examples whereb52 andb52.2 which
gives a reasonable increase in the polynom degree, ant
51.9 such that the productb(t21);2.

We first depicted the pattern of zeros, for different siz
in Fig. 1. One notices the slow convergence to the unit circ
and the shape of the curve near toz51: this is not a circle.
1-7
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We plotted Fig. 3 the real and imaginary part of the ze
in the t plane. For the real part we tried a fit of the for
r (k)5$2 log(a)11

2 log@log2(a)14p2k2#%/LL wherea is a free
parameter. The formula~22! givesath5(t21)/LL

t21 but, in
the several approximations we made, we neglected s
constants, and one expectsa to be different from the theoret
ical value, with an error that should decrease asL grows. The
result of the fitting is represented Fig. 3~a! for the 200 first
zeros. We found indeed that the experimental valueaexp is
closer and closer to its theoretical value asL increases and
that our approximation is better and better asL increases. For
L550, ath57.8731024,aexp55.6310246431025; for L
5100,ath52.2631024,aexp51.5310246331025 and for
L5150, ath51.0931024,aexp57.131025681027. The
imaginary part is plotted in Fig. 3~b! together with the theo-
retical prediction Im@ tL(k)#52pk/Lb ~straight lines!. We
noted a slight deviation of the first zeros to 2p/LL due to the
correction term in Eq.~26!.

FIG. 3. Lee-Yang zeros in thet complex plane, versusk for
various L values.~a! Real part multiplied byLL . ~b! Imaginary
part.
03613
s
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In Fig. 2~a! we plotted the argument oftL(k) as a function
of L for k51, . . . ,5. Wenotice the logarithmic deviation to
the normal scaling as predicted by formula~24!. We tried to
fit these curves with a fit of the form arctan„2kp/a@ log(x)
1g#11

2 log$a2@log(x)1g#214k2p2%…, wherea,g are free pa-
rameters. In Fig. 2~b! we show the different scaling occur
ring for t,1 ~normal scaling! or t.1 ~anomalous scaling!.

Finally we argued above that the exponentsb andt can
be determined with a good accuracy from the scaling of
zeros. In Fig. 4~a! we plotted arg@zL(5)#5uL(5) as function
of L for b51.5,t51.6;b52,t51.21;b52.2,t51.9, andL
520, . . . ,120. We choose the fifth zeros rather than the fi
ones since for the first zeros the correction coming from
arctan term in Eq.~23! influences slightly the scaling fo
small L. We tried a fit of the formC/xb whereCth;10p
531.415 . . . . The fitsshown on the figure gave, respe
tively, b51.50760.002;b52.0076931023;b52.2056
30.001.

FIG. 4. ~a! Argument of the fifth Lee-Yang zero in thez complex
plane, versusL for variousb values.~b! RL(p) as a function ofL
for varioust values. The fitting curves are plotted using lines.
1-8
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ANOMALOUS SCALING AND LEE-YANG ZEROS IN . . . PHYSICAL REVIEW E65 036131
For the determination oft we used Eq.~27! for t50.2,
1.21, 1.9, andb52. We have interpolated the data with a
form ebt log(ax)/xb

where a,t were free parameters. ForL
520, . . . ,120, we found, respectively, 0.1998(2)66.1026,
1.207(5)67.1025, and 1.89(5)60.0001 for the value oft.
This is satisfactory especially when taking into account
smallness of theL ’s we considered.

B. General case: the structure of the cutoff

The observed probability distribution of avalanches o
servables in SOC models is in general a powerlaw trunca
by a cutoff function associated with finite-size effects. E
cept for a few cases@38#, the analytic form of the cutoff is
not known. Consequently, various scaling forms have b
proposed in the SOC literature. In this section we grasp
most common scaling forms and discuss their effect on
Lee-Yang zeros. We also investigate the effect of the s
pling cutoff inherent to numerical simulations.

1. General assumptions about the cutoff function

Since PL(n) is expected to converge to a power la
Kn2t one can write, without loss of generality, the finite si
probability under the form

PL~n!5
CL

nt
f L~n!, 1<n<jL ~29!

whereCL is a normalization constant depending onL. f L(n)
is the finite size cutoff.

The graph obtained from numerical simulations sugge
that f L(n) is a regular function which obeys

~ i! lim
L→`

f L~n!51, ;n<jL ,

~ ii ! ;p.0, lim
n→`

npf L~n!50, ;L.

The property~i! corresponds to the pointwise convergence
a power law.~ii ! characterizes the observed fact that the
of PL(n) decreases faster than any power ofn ~e.g., is least
exponentially decreasing!.

These properties are not sufficient for a scaling theory
further assumptions have to be made. We now discuss v
ous scaling forms that one can find in the literature and a
the numerically induced cutoff effects.

Finite-size scaling. In 1990, Kadanoffet al. @13# proposed
a finite-size scaling ansatz where

f L~n!5gS n

LL
D , ~30!

g being a universal function.LL5Lb is the characteristic
scale for a lattice of sizeL andjL5aLL wherea is a con-
stant. The case of a truncated power law developed in
II A corresponds to the particular case wherea51, andg(x)
is equal to 1 forxP@0,1# and zero otherwise. Note that i
this case the property~ii ! has the consequence that
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~ iii ! lim
x→0

g~x!51.

Multifractal scaling. In the same paper, Kadanoffet al.
@13# discussed another form of scaling, that is

log@PL~n!#

logS L

L0
D 5 fS logS n

n0
D

logS L

L0
D D , ~31!

where f is universal and does not depend explicitly onL.
L0 ,n0 are some constants that can be omitted by a suita
redefinition of the quantities, then

PL~n!5L f (log n/ log L). ~32!

This representation is called by the authors anf 2a repre-
sentation,a being the quantity log(n/n0)/log(L/L0). In this
case one has a whole spectrum of scaling indices, i.e., al
values taken on byd f /da. In the general casef is nonlinear.
Then the universality class is given by the functionf, rather
than by a finite set of critical exponents. In this case,
scaling exponents are nonlinear functions ofq.

Finite size scaling violation and convergence to a pow
law. Another scaling form has been introduced by Lise a
Paczuski@16# from numerical simulations on the Olam
Feder-Christensen model.6 Lise and Paczuski analyzed the
data with the following form forPL(n):

PL~n!5CLn2tLFL(log(n)/ log(L)), n51, . . . ,LbL ~33!

wherebL is now L dependent,bL,b,` andbL→b asL
→`. Furthermore, the numerical plot ofFL(x) in @16# sug-
gests thatFL(x) converges to a ‘‘step’’ functionY(x2b) as
L→`, whereY(u)50, uP] 2`,0@ , Y(0)5C and Y(u)5
2`, uP]0,`]. The finite size scaling case corresponds
FL(x)5 log@g(Lx2b)#/logL where g is defined in Eq.~30!.
This example is quite interesting since it gives an example
a probability distribution violating Eq.~30! but converging
nevertheless to a power law~namely the exponentst andb
are still meaningful!. We remark indeed that the correspon
ing probability distribution isnot multifractal in the sense of
@14# since it is easy to check that the scaling exponents
given by s(q)5b(q112t), ;q>t21 ands(q)50, ;q
,t21. This case is therefore intermediate between
finite-size scaling~30! and the multifractal case~32!. In the
following sections we discuss the behavior of the Lee-Ya
zeros in these different cases.

2. Finite-size scaling

We show in this section that the behavior of the Lee-Ya
zeros in the finite size scaling case is essentially the sam
for the truncated power law, providedg in Eq. ~30! fulfills
the conditions~i!,~ii !,~iii ! in the previous section.

6B.C. is very grateful to M. Paczuski for illuminating discussio
on this topic in Bielefeld.
1-9
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It is well known that the moments obey the same scali
This can be recovered from the generating function~1!. Pro-
vided t,2 it scales asL→` like

ZL~ t !;11CLLL
12t@Ya~ t8!2Y1/LL

~ t8!#;1

1CLLL
12tYa~ t8!1CLc~ t !;11CLLL

12tYa~ t8!

~34!

for t→0 in thet complex plane. In this equationt85LLt and

Yg~ t8!5
defE

0

g

u2tg~u!~et8u21!du5 (
n51

`
t8n

n! E0

g

un2tg~u!du.

~35!

Consequently, near tot50, ZL(t);11CLLb(12t)Ya(tLb)
andGL(t);CLLb(12t)Ya(tLb). As expected one obtains th
same scaling as for a truncated power law. The only cha
is that the functionY depends now on theg function.

The zeros ofZL(t) are therefore well approximated by

Ya~ t8!;2CLLL
t21 ~36!

which is completely analogous to Eq.~17!. Therefore, the
same conclusions hold: Eq.~36! can be fulfilled only if the
solutionstL8(k) have a diverging modulus asL grows. The
computation of the zeros is essentially the same as in
II A with slight complications due to the presence of t
function g.

One can write

ZL~ t !;CLLL
12tE

1/LL

a

h~u,t8!du, ~37!

where nowh(u,t8)5u2tg(u)et8u. Recall that, by hypoth-
esis,g(u) is an at least exponentially decreasing function.
u grows from to 0 tò , h(u,t8) first decay likeu2t until a
minimum u2 after whichh(u,t8) grows exponentially like
et8u. u2 tends to 0 ast8→`. More precisely, ift8 is suffi-
ciently large, from~iii ! g(u) is essentially 1 on the interva
@0,u2# and thereforeu2 is approximately given byt8u2

2t

5tu2
2t21. Consequentlyu2;t/t8. When u is sufficiently

large the decay coming fromg(u) compensates the expone
03613
.

ge

c.

s

tial increase ofet8u. Therefore, there is a maximumu1 after
which h(u,t8) tends to zero with a rate given byg(u). Here,
h(u,t8) is essentiallyg(u)et8u. Thereforeu1 is given by
t8g(u1)1g8(u1)50 or t852d log@g(u1)#/du, where
2d log@g(u)#/du is a function which increases faster thanu
by ~ii !. Consequently,u1 diverges ast8→`. Since a is
bounded by assumption,u1.a for t8 ~L! sufficiently large.
But, from Eq.~36! we know that the modulus of thet8 cor-
responding to the zeros diverge asL→`. Consequently, pro-
vided L for is sufficiently large, the zeros lie in a regio
whereu1.a. Guided by the wisdom coming from Sec. II
we can assume that the zeros accumulate onto a curvgL
which separates the complex plane into two regions. In
first one, the behavior is dominated by the algebraic part
the integral in Eq. ~37! is essentially *1/LL

a h(u,t8)du

;@1/(t21)#@LL
t212at21#. In the second region, the expo

nential part dominates. Providedt8 is sufficiently large (u1

@a), the variations ofu2tg(u) are small compared to th
increase ofet8u and this function can be approximated b
some constantGg . Hence *u2

a h(u,t8)du;Gg*u2

a et8udu

;(Gg /t8)@et8a2et#.
Consequently, for sufficiently largeL, the zeros are well

approximated by

1

t8
@et8a1a1t82a2#52

LL
t21

Gg~t21!
, ~38!

wherea15at21/Gg(t21), a25et.
This equation is similar to Eq.~19!. The zeros are now

given by

tL~k!52

WkS aGg~t21!

LL
t21 D

aLL
. ~39!

Consequently, one finds that the pattern of zeros in the fin
size scaling case is essentially the same as the power
case, up to a correction depending ona,Gg . More precisely,
using the series expansion~21! of the Lambert function one
finds
s

Re@ tL~k!#;

2 logS aGg~t21!

LL
t21 D 1

1

2
logF log2S aGg~t21!

LL
t21 D 14k2p2G

aLL
, ~40!

Im@ tL~k!#;
2kp

aLL
, ~41!

wherek51, . . . ,jL5aLL .
In the z plane this essentially results in a trivial rescaling of the argument Im@ tL(k)# and a slight change in the modulu

RL(k),

RL
FSS~k!;kLRL

PL~k!1/a, ~42!
1-10
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where the superscript FSS~PL! refers to the finite size scaling~power law! situation.kL5(1/aGg)1/aLL is therefore a scaling
factor which tends to 1 as expected since the zeros have to accumulate on the unit circle. In Eq.~42! we neglected the more
complicated dependence coming from the log(log) term. This has a small effect on the first zeros but becomes negligk
grows. This provides a way to determinekL . SettingRL

PL(p) for the farthest zero fromz51,

kL5
RL

FSS~p!

RL
PL~p!1/a

. ~43!

The argument oftL(k)’s is

arg@ tL~k!#;arctanS 2kp

2 logS aGg~t21!

LL
t21 D 1

1

2
logF log2S aGg~t21!

LL
t21 D 14k2p2G D . ~44!
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The cutoffg modifies, therefore, the value of the angles b
not the scaling.

We numerically checked these result in the followi
case. We generated a probability distribution given by

PL~n!5CLn2tgS n

LbD , n51, . . . ,aLb ~45!

where

g~x!5e2xg
. ~46!

We fixed the parameters to the valuesb52,t51.9,g
52.5,a51. We show in Fig. 5 the collapse of the curve
zeros to the corresponding curve for a power law with
samet,b. k was computed from the ratio~43!. We found
k51.0001 forL5100.

3. Effect of a sampling cutoff

We would like now to point out a very simple way t
violate the scaling form~30! by the only numerical proce
dure traditionally used in the computation ofPL(n). This

FIG. 5. Pattern of zeros in thez complex plane for the powe
law case,b52,t51.9,L5100, where the real and imaginary pa
have been multiplied byk, and for the FSS caseb52,t51.9,g
52.5,a51,L5100.
03613
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effect is closely related to the anomalous scaling of the L
Yang zeros since it appears for a critical exponentt.1.

In numerical simulations, one computes an empirical d
tribution PL

exp(n,v)5N(n,v)/N whereN is the total num-
ber of avalanches observed during the simulation a
N(n,v) is the number of times an avalanche of sizen was
observed. This number is a random variable depending,
on the initial condition~s!, or more generally, on the seedv
used in the random generator. However, one expects the
tem to be ergodic in a strong sense such thatPL

exp(n,v)
→PL(n) as N→` for generic choices ofv ~see@10# for
details.!. However, sinceN is finite, there exists wild fluc-
tuations in the tail of the distribution. Furthermore, the av
lanches such thatPL(n),1/N have a small ~though
nonzero7! probability to be observed in a numerical simul
tion and this probability decreases asn increases. Obviously
there are several methods such as smoothing or binning
lowing us to reduce the effects of noise in the tail.

There exists, however, another more subtle effect. In
the examples of numerical computations that we have fo
in the SOC literature, the value ofN is fixed, independently
of the system size. This induces a pathological bias affectin
the extrapolation to the thermodynamic limit whatever t
method used to analyze the empirical distribution. In parti
lar a violation of finite-size scaling can be observed
PL

exp(n,v) even if the theoretical probability PL(n) obeys
Eq. (30). WhenN is kept fixed while Lincreases, the estima
tion of the maximal valuejL that the random variable ca
take ~defining the exponentb) is more and more biased
Indeed, while the truejL diverges asL→`, the empirical
value jL

exp(v) converges to a constant. Consequently,
probability distribution extrapolated to the thermodynam
limit from the empirical distribution is biased. The aim o
this section is to analyze this effect, which not discussed
the literature.

7However, since the largest nonzero value ofPL
exp(n,v) is 1/N,

the events such thatPL(n)!1/N, even when observed, are given a
incorrect probability by the numerical procedure. The discrepa
with the theoretical value increases asn increases.
1-11
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B. CESSAC AND J. L. MEUNIER PHYSICAL REVIEW E65 036131
Assume therefore thatPL(n) is like Eq.~29! with a cutoff
obeying Eq.~30!. We call FL(n)5(k51

n PL(k) the corre-
sponding repartition function. Assume now that we perfo
a finite sampling of the probability distribution withN trials
X1 , . . . ,XN , whereXi ,i 51, . . . ,N are independent,8 iden-
tically distributed random variables, with probabilityPL(n).
Assume, furthermore, thatN is fixed independently ofL.
Call jL,N

exp5max$Xk ,k51, . . . ,N% the maximal value ob-
served in the finite sampling. The repartition function of t
random variablejL,N

exp is FL
N(x). Its average is given by

E@jL,N
exp#5jL2 (

n51

jL

FL
N~n!. ~47!

8We assume here that the trials are independent for simplicity
SOC models the avalanches are not independent, though for finL
the correlation decay can be fast~it is exponential in the finite size
Zhang model!.

FIG. 6. Effect of the sampling cutoff.~a! Ratio rL

5E@jL,N
exp#/jL . ~b! Moments.
03613
Clearly, wereL fixed whileN→`, thenE@jL,N
exp# would con-

verge tojL . In fact the ergodic theorem gives a strong
statement, namelyjL,N

exp→jL almost surely in this case. Thi
essentially means that for sufficiently smallL, E@jL,N

exp# gives
a good estimate ofjL . On the other hand, ifN is fixed while
L increases, the correction term(n51

jL FL
N(n) in Eq. ~47! be-

comes more and more important, leading to a wrong esti
tion of jL . To be more precise fix a valueyP]0,1@ , such that
FL

N is considered as non-negligible as soon asFL
N(n).y.

Hencey is somehow arbitrary here~say close to 0). Since
FL

N(n) is strictly increasing the equationFL
N(x)5y⇔FL(x)

5y1/N has a unique solutionxL[xL(y), ;yP]0,1@ . If L is
small ~or if N is sufficiently large! xL;jL and therefore
FL

N(n) is essentially nonzero forn;jL . In this case the term
(n51

jL FL
N(n) in Eq. ~47! is negligible compared tojL .

On the other hand,xL is bounded from above by afinite
valuex such thatF* (x)5K(n51

x n2t5y1/N, whereF* is the
repartition function of the limiting probabilityP* (n). Con-

In

FIG. 7. ~a! Argument of the first Lee-Yang zeros of an empiric
distribution generated fromN5108 samples.~b! Values of a,b
extrapolated from~a!.
1-12
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sequently, asL increases, for anyyP]0,1@ , xL(y)/jL→0.
Hence, the functionFL

N(x) is non-negligible on a larger an
larger interval, whose length scales likejL . Therefore, the
sum(n51

jL FL
N(n) in Eq. ~47! becomes more and more impo

tant, yielding a decrease in the expectation of the empir
maximum.

In the range ofL values where this effect starts t
manifest one has xL;jL . Hence, (n51

jL FL
N(n)

;(n5xL

jL FL
N(n) and FL

N(n) has only to be estimated in th

interval @xL ,jL#. Furthermore,FL(n)512(k5n
jL PL(n);1

2CL*n
jLu2tg(u/LL)du. When xL is close to jL ,

*n
jLu2tg(u/LL)du;(jL2n)jL

2tg(a) for nP@xL ,jL#. Fur-
thermore, in this range, 12CLjL

2t(jL2n)g(a) is small
compared to 1. Hence,FL

N(n);12NCLjL
2t(jL2n)g(a).

The equationFL
N(x)5y has therefore an approximate sol

tion xL5jL2@(12y)/NCLg(a)#jL
t . Then (n51

jL FL
N(n)

;(n5xL

jL FL
N(n) can be roughly approximated by a line

interpolation giving (n5xL

jL FL
N(n);(jL2xL)/25@(12y)/

NCLg(a)#jL
t .

Consequently, the empirical expectation is in this appro
mation

E@jL,N
exp#;jLS 12

12y

NCLg~a!
jL

t21D . ~48!

Sincet.1 the correction term increases asL grows. It even-
tually becomes of the same order asjL , but whenL in-
creases one has to add higher order corrections to Eq.~48!.
On the other hand, weret,1, then would the correction
term become negligible asL grows.

The L value where the effect starts can be estimated b

L;S 12y

NCLg~a! D
21/b(t21)

. ~49!

Consequently, this effect is more prominent whenb(t21) is
larger.

The ratioaL5E@jL,N
exp#/Lb is therefore not equal to a con

stant a as it must be, but isL dependent@see Fig. 6~a!#.
Clearly, for sufficiently largeL the corresponding probability
ro

o

03613
al

i-

violates the finite size scaling and the data collapse. Further-
more, the scaling of the moments is also affected by t
effect. Indeed the moments are obtained empirically from

formula mL
exp(q)5(n51

jL
exp

nqPL
exp(n) and the scaling expo

nents are extrapolated from the formula

sexp~q!5 lim
L→`

log@mL
exp~q!#

log~L !
.

WhenL is sufficiently small,jL
exp;aLb since the correction

due to the finite sampling has essentially no effect. Then
obtains the right scaling exponents(q) from the data. How-
ever, whenL increases, one observesa spurious deviation of
the curve mL(q) from the theoretical value. This effect is
illustrated in Fig. 6 in the caset51.9,b52,g52.5,a52,
g(x)5e2xg

where two samples withN5106 and N5108

were generated. Note that the effect is more prominent w
q increases.

This computation shows therefore that for the valuest
.1 numerical problems appear, induced by the finite s
sampling. Not only the fluctuations ofjL,N

exp increase but also
the averaged valueE@jL,N

exp# is biased. To our opinion, the
estimation of the correctjL is the main problem in analyzing
the data from SOC simulations.

The analysis of the Lee-Yang zeros for relatively sm
sizes can, however, give a fairly good estimate of the val
a,b allowing to extrapolatejL to larger size. Indeed, Eq
~40! suggests that the argument oftL(k) is not too sensitive
to the fluctuations ofjL,N

exp @compared to the fluctuations o
the moments which are of order (jL,N

exp)q112t#. Hence, it is
possible to find the values ofa,b. We give an example in
Fig. 7 where the empirical data are the same as those
for the computation of the moments. As for the truncat
power law, we found a slight deviation for the first zer
Interpolating the values fromk51, . . . ,10 we found a
52.09460.00660.09,b52.00260.003 which gives quite a
good estimate.

The real part of Lee-Yang zeros and, consequently,
argument, is more sensitive to nonextensive sampling eff
An analytical expression is obtained if one modifies t
equations~22!– ~24! by replacinga by aL . The argument of
tL(k) writes now
arg@ tL~k!#;arctanS 2kp

2 logS aLGg~t21!

LL
t21 D 1

1

2
logF log2S aLGg~t21!

LL
t21 D 14k2p2G D . ~50!
y.
ith

ion
The finite sample effect is illustrated Fig. 8 for the first ze
One observes a deviation from the real curve forN5106.
This can be used as an empirical way to define theL where
the empirical distribution is not biased. Note that the curve
the argument of the first empirical zero obtained forN
.

f

5108 follows the theoretical curve with a good accurac
This shows that the determination of the zeros is robust w
respect to fluctuations in the coefficients of the polynom~1!.
This is in fact an easy consequence of the implicit funct
theorem.
1-13
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Looking at Figs. 6~b! and 8 one could argue that the m
ments are less sensitive than the Lee-Yang zeros to a
independent sampling. However, the sensitivity of the m
ments increases with the degreeq. Therefore, to detect this
effect, one has to compute the moments for highq. This can
clearly cause numerical problems. On the other hand,
Lee-Yang zeros integrate information about all order m
ments and the sensitivity can be detected easily. We bel
that this kind of analysis is prior to any investigation co
cerning in particular the multifractal nature of the scaling

Our conclusion is therefore twofold. Firstly, some ca
tions are required when increasingL to extrapolate the ther
modynamic limit. If N is kept fixed,too large L will give
wrong estimations. In this case at least, the bigger is not
best. This effect can be compared to the critical slow
down in the literature about critical phenomena. However
the best of our knowledge we do not know any example
the SOC literature where this effect has been discussed.
ondly, the Lee-Yang zeros nevertheless give useful inform
tion. They can be used to determine the range ofL values
where the data are not too affected, and, in this range,
simple scaling of the imaginary part allows us to determ
the scaling ofjL . This can be used with other methods su
as binning, or smoothing, to determine the exact distribut
from the empirical one.

4. Other scaling

In this section we investigate briefly the other scali
forms discussed in Sec. II B. Our main conclusion is that
Lee-Yang zeros are highly sensitive to the changes in

FIG. 8. Effect of a sample cutoff on the argument of the zeros
the t plane.
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scaling form. This remark opens the perspective to develo
general theory allowing us to extrapolate the characteris
of probability distributions from the behavior of the Lee
Yang zeros of the empirical generating function. Howev
we have not yet been able to provide an equivalent of
analytic forms Eqs.@~20! and ~39!# that would be helpful to
properly extract the features of the probability distributi
from the Lee-Yang zeros. The development of such a gen
framework is under investigation and will be published in
separated paper. We give a few numerical examples in F
9~a! and 9~b!.

We investigated first the case~33! where FL(x)5Y(x
2bL). In this case, the computations done in Sec. II A e
sentially hold, with ab depending onL. In particular, Eq.
~26! suggests that theL dependence ofb should be detected
on the argument ofzL(k), uL(k). In Fig. 9, we plotteduL(5)
in the casebL5b@12(1/L)#, where b52,t51.9, andL

n

FIG. 9. ~a! ArgumentuL(5) for the truncated power law~POW!,
a truncated power law withL-dependentb ~V!, a probability distri-
bution of the form~33! with FL(x) given by Eq.~51! ~NL!, and a
multifractal distribution~MF!. ~b! Argument oftL(5).
1-14
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520, . . . ,120. The theoretical prediction isuL(5)
510p/Lb[12(1/L)] . We tried a fit of the form f (x)
510p/Lb[12(1/La)] , where a,b are the fit parameters. W
founda51.014(8)60.0006,b52.013(9)60.0001, which is
quite satisfactory.

We also tried a more general form forFL(x) with a non-
linear FL converging to a step function asŁ→`,

FL~x!52H 11tanhFLa1S x2b2
1

La2
D G J , x<b2

1

La2
.

~51!

In our simulations,b52,t51.9,a150.1,a251. La1 con-
trols the rate of approach ofFL(x) to the step function asL

FIG. 10. ~a! Zeros in thez plane forL530, e50.1, N5106,
Ec52.2. The zeros of the experimental,N5106, and smoothed
probability distribution are represented.~b! Examples of empirical
and smoothed probability distributions used in the computation
the zeros.
03613
grows. A smalla1 gives a slow convergence and therefo
has an effect up to very largeL.

The result for the argumentuL(5) is also represented in
Fig. 9a. We note that the curve is indistinguishable from
previous case and therefore the imaginary part oftL is not
sensitive to the nonlinear effect of the tanh, but gives
right a2. On the other hand, we noted that the argument otL
is sensitive to the nonlinear effect@Fig. 9~b!#.

For the multifractal case we studied the case where
multifractal spectrum has the formf (x)5C2tx2ax2. This
is the lowest degree nonlinear form off compatible with~i!
and ~ii ! and with the convexity off. The values ofa51,b
52,t51.9 were the same as for the previous examples.
observe@Fig. 9~a!# that uL(k) is not sensitive to the multi-
fractality and gives therefore the righta,b. Consequently,
our method to estimate the degree is also valid for a mu
fractal distribution~32!. On the other hand, arg@ tL(k)# is
modified for a multifractal distribution, but we are not y

f

FIG. 11. ~a! Argument of the five first Lee-Yang zeros in thez
plane versusL for Ec52.2,e50.1. The full lines corresponds to
fit. ~b! Plot of the fit parametersa,b versusk.
1-15
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able to analyze this variation. All the results are depicted
Fig. 9~a! „uL(5)5Im@ tL(5)#… and Fig. 9~b! „arg@ tL(5)#….

III. AN EXAMPLE OF A SOC MODEL

In this section we study an example of the Lee-Yang ze
computation for a SOC model, the Zhang model, defined
follows. Let L be ad-dimensional sublattice inZd, taken as
a square of edge lengthL for simplicity. Call N5#L5Ld,
and let ]L be the boundary ofL, namely the set of points in
Zd\L at distance 1 fromL. Each sitei PL is characterized
by its ‘‘energy’’ Xi , which is a non-negative real numbe
Call X5$Xi% i PL

a configuration of energies. LetEc be a real,

strictly positive number, called thecritical energy, and M
5@0,Ec@

N. A configurationX is called ‘‘stable’’ if XPM
and ‘‘unstable’’ otherwise. IfX is stable then one chooses
site i at random with probability 1/N, and add to it energyd
~excitation!. If a site i is over critical or active (Xi>Ec), it
loses a part of its energy in equal parts to its 2d neighbors
~relaxation!. Namely, we fix a parametereP@0,1@ such that
the remaining energy ofi is eXi , after relaxation of the site
i, while the 2d neighbors receive the energy (12e)Xi /2d.
Note, therefore, that the energy is locally conserved. If s
eral nodes are simultaneously active, the local distribut
rules are additively superposed, i.e., the time evolution of
system is synchronous. The succession of updating lea
an unstable configuration to a stable one is called anava-
lanche. The energy is dissipated at the boundaries of
system, namely the sites of]L have always zero energy. A
a result, all avalanches arefinite. Consequently, whatever th
observablen, jL,` for finite L. The addition of energy is
adiabatic. When an avalanche occurs, one waits until it sto
before adding a new energy quantum. Further excitati
eventually generate a new avalanche, but, because o
adiabatic rule, each new avalanche starts fromonly oneac-
tive site. It is conjectured that a critical state is reached in
thermodynamic limit.

Though it has long been believed that the Zhang mo
obeys finite size scaling~30!, a recent paper revised th
point of view and claimed that the Zhang model does
even have a multifractal scaling~but no alternative scaling
was proposed@15#!. We will not solve this debate in this
paper. Rather we will come to two conclusions. First, b
cause of high sensitivity of the model to the sample cut
~Fig. 12!, one has somehow to relativize the conclusio
about the scaling obtained from the numerical simulatio
This shows that to draw any reliable conclusion on the s
ing one has to increasethe sample with the system size~e.g.,
like Lb). This will clearly be rapidly intractable even for th
fastest computers. Secondly, the Lee-Yang zeros give ra
reliable extrapolations provided the sizeL is not too large.

We computed the empirical probability distribution
avalanche sizesPL

exp(s) where the size is the total number
relaxing sites during one avalanche. We did our simulati
for lattice sizes fromL510 to L555 in two dimensions,
with Ec52.2,e50.1 with a statistics overN5106 and N
5108 avalanches. Consequently,N was fixedindependently
of L as usually done in SOC numerical simulations.
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We first present in Fig. 10~a! the experimental zeros in th
z complex plane forL530,N5106. In order to see the effec
of the noise, we also computed the zeros of a smoot
version of the empirical probability distribution@Fig. 10~b!#.
The smoothing method uses a binning procedure, follow
by a spline extrapolation, allowing us to fill the ‘‘holes’’ ex
isting in the empirical probability distribution. These hole
correspond to events that did not happen during the trial
consequently are given a zero probability. In the numeri
computation of the zeros, these holes correspond, there
to vanishing coefficients in the polynom~1!, which produce
problems in the convergence of most of the root finding
gorithms. Our numerical procedure seems, however, to
robust with respect to this effect.

As argued all along in this paper, the argumentuL(k)
provides a way to determine the exponentb characterizing
the maximal avalanche size. We plot in Fig. 11~a! theuL(k)’s
for k51, . . . ,5 versusL. We note thatuL(k) is quite robust
to noise and gives therefore a reliable way to measureb,a.
We used a fit form 2pk/aLb, wherea,b are fit parameters
We found a slightk dependence for the first zeros@as ex-
pected from Eq.~23! if one assumes FSS#. We plotted in Fig.
11~b! the extrapolateda,b versusk. For k.3 these values
seem to stabilize arounda50.6260.07 andb52.5960.04.
In the finite size scaling ansatzb and t are related byb(2
2t)52 @25# andt51.253 is known from the renormaliza
tion group analysis. Therefore the predicted value forb is
2.667. Despite the smallness of theL we considered, the
computed value is not too far from the predicted one. Ho
ever, an accurate determination ofb,t and a precise check o
FSS would demand somewhat larger size systems, which
were unable to generate for this illustration.~Note that the
main problem is not the computation of the zeros, since th
exist quite fast and precise root finding algorithms, but
generation ofPL

exp itself.!
Finally, we investigate the scaling of the argumenttL(k)

and a possible size independent sampling effect. The m
difficulty here is the wild fluctuations injL

exp. Indeed, the

FIG. 12. Argument of Lee-Yang zerostL(1),tL(2) for Ec
52.2,e50.1. Full lines indicate the interpolation of the empiric
curves obtained from the sampling withN5108.
1-16
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ANOMALOUS SCALING AND LEE-YANG ZEROS IN . . . PHYSICAL REVIEW E65 036131
real part oftL(k) is more sensitive than the imaginary part
these fluctuations and consequently arg@ tL(k)# as wild fluc-
tuations. Only the first zeros seem to be robust to this eff
As discussed in Sec. II B 3 these fluctuations injL

exp are
intrinsic to the empirical computation ofPL

exp and cause
problems in the extrapolation to the thermodynamics lim
whatever the method used. We plotted in Fig. 12 the ar
ment of the two first Lee-Yang zeros in thet plane, versusL.
Our simulations suggests that the Zhang model is sensitiv
the size independent sampling. Note in particular that
values ofL that we used in our computation are quite sma
that the ones found in the literature and the effect is alre
significant forN<106.

This shows clearly that a reestimation of the conclusio
drawn from the numerics in the Zhang model~and also,
maybe, for some other SOC models! should be done in light
of this effect. On the other hand, our approach suggests
there may be no need to go to gigantic sizes provided
finite lattice size effects are carefully handled. From t
point of view, analytic formulas like Eq.~44! might provide
a way to analyze these effects.

CONCLUSION

In this paper we have shown that the finite size study
the SOC-like probability distributions leads to similar Le
Yang or Fisher phenomenon as in statistical physics mo
near the critical point. This implies that the convergence
the SOC state to a critical state with power law statistics
be analyzed in a similar way as equilibrium statistical m
chanics. More precisely, the way the zeros of the partit
function accumulate on the real axis, when the size of
system grows up, provides relevant informations on the c
cal structure of the observed system. In particular, it perm
us to measure useful critical indices of the underlying theo

Moreover, we have shown that the size of the SOC m
els power exponent,t.1, leads to a comprehensive viola
tion of the standard scaling laws. We give a approxim
theory of this effect well confirmed by numerical simul
x

,

,
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tions. It is the same characteristic which leads to a spec
sensibility of the SOC numerical experiments to size ind
pendent sampling effects. We studied carefully this effect
extrapolation to the limitL→` and show that it could pos
sibly mimic important effects such as multifractality. We n
tice that the argument of the zeros in thet5 log(z) plane is a
good test of this effect.

We show that the arguments of the first zeros in thz
plane of the generating function,G(z), is rather insensitive
to these effects, statistically robust, and provides a nice w
to compute the SOCa andb parameters. Using the standa
Kadanoffet al. scaling form@13#, we verify that the param-
eter’s values as extracted from numerical simulations wer
good agreement with the theoretical input of the model. T
last result gives us some confidence to extract the value
these parameters from Zhang’s model numerical data. No
that these results have been extracted from medium ra
simulations. This shows up once more for the power of
finite size analysis of the critical phenomenon.

This paper is~with @20#! a first step toward the scalin
theory of the SOC system from the behavior of the Lee-Ya
zeros. The next step would be the definition of the expone
characterizing the approach to criticality, like the expone
a,b,g in statistical mechanics and their link to the scaling
the zeros.
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